• 제목/요약/키워드: Die Manufacturing Technology

검색결과 622건 처리시간 0.025초

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.

컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 엔진 크레들의 하이드로-포밍 공정 연구 (Hydro-forming Process of Automotive Engine Cradle by Computer Aided Engineering (CAE))

  • 김기주;최병익;성창원
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.86-92
    • /
    • 2008
  • Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of front engine cradle (or front sub-frame) parts development by tube hydro-forming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydro-formability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape on automotive sub-frame by hydro-forming process were carefully investigated. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydro-forming. At the die design stage, all the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.

미국 식품의약품안전청 식품안전 현대화법에 대한 국내 식품산업의 대처 방안 (Preparedness of food industry in korea for united states food and drug administration food safety modernization act)

  • 김장호;은종방
    • 식품과학과 산업
    • /
    • 제49권3호
    • /
    • pp.55-61
    • /
    • 2016
  • Even though the food safety system in the United States is one of the best in the world, many millions of people become sick and thousands die from foodborne illnesses caused by any of a number of microbial pathogens and other contaminants. Large recalls of United States Department of Agriculture (USDA) and the Food Drug and Administration (US FDA)-regulated food products due to findings of E. coli O157:H7, Listeria, Salmonella, and other problems occur each year. As the US FDA Food Safety Modernization Act (FSMA) passed in 2011, FSMA will require food processing, manufacturing, shipping, and other regulated entities to conduct an analysis of the most likely safety hazards and to design and implement risk-based controls to reduce or eliminate these hazards. FSMA also mandates increased scrutiny of food imports, which account for a growing share of U.S. food consumption; food import shipments will have to be accompanied by documentation showing that they can meet safety standards that are at least equivalent to those in the U.S. On September 17, 2015, the US FDA published final rules for Preventive Controls for Human and Animal Food and, continuing into 2016, the US FDA intends to finalize the remaining five rules it has proposed to implement FSMA. Among these rules, this article will review and discuss Preventive Controls for Human Food Rule and its components, and suggest how to comply with these FSMA rules as foreign human food and ingredients suppliers to the US.

이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구 (A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials)

  • 윤동민;전용한
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

대형 고속프레스의 유한요소해석을 통한 진동 및 소음에 대한 연구 (A Study on Vibration and Noise through Finite Element Analysis of Large High Speed Press)

  • 김승수;정철재;이춘규
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.14-23
    • /
    • 2023
  • The electric vehicle market is developing rapidly around the world. Also, parts of electric vehicles require precision.In order to produce high-precision motor cores,Press equipment must also have good precision. Drive motor cores are an important technology for electric vehicles. It uses a large high-speed press to mass-produce drive motor cores. Because it's a large high-speed press, there are many reasons why the precision is not good. One of the causes is vibration and noise. Recently, as environmental demands have become stricter, regulations on noise and vibration have been strengthened. It is important for press machines to reduce vibration first for sound insulation and dust proofing. This is because the "breakthrough" phenomenon occurs in the press. Dynamic precision is the precision under the load of the press, Design considering strain and stiffness shall be made. Vibration and noise may occur due to SPM of high-speed press,And vibration and noise can cause structural deformation of the press. Structural deformation of the press can affect the precision of the product.Noise and vibration also cause problems for workers and work environments. Problems with vibration and noise occur during press processing, and vibration and noise lead to damage to the mold or defects in the product. Reliability in high-quality technology must be secured with low noise and low vibration during press processing. Modular shape and deformation energy effects were analyzed through finite element analysis. In this study, a study on vibration and noise countermeasures was conducted through finite element analysis of a large high-speed press.

미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석 (A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution)

  • 정호승;조종래;박희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

일체형 랙 튜브 성형을 위한 고 탄성체 물성시험과 유한요소 해석 (Physical Test and Finite Element Analysis of Elastomer for Steel Rack Tube Forming)

  • 우창수;박현성;이근안
    • Elastomers and Composites
    • /
    • 제43권3호
    • /
    • pp.173-182
    • /
    • 2008
  • 고무나 우레탄과 같은 고 탄성력을 이용하여 튜브를 임의의 형상으로 성형하는 고 탄성체 성형방법은 타 공정에 비해 높은 치수 정밀도와 생산 공정의 단축, 에너지 절감 등을 기대할 수 있는 차세대 성형기술이라 할 수 있다. 본 연구에서는 탄성체에 대한 소재 물성시험과 특성평가를 통해 고 탄성체 성형에 적합한 소재를 선정하고 시험으로 얻어진 응력-변형률을 이용하여 비선형 재료상수를 결정하여 성형해석에 필요한 물성 데이터를 확보하였다. 또한, 랙튜브에 대한 유한요소해석을 통해 탄성체의 두께변화에 따른 공정변수의 영향을 검토하였다.

치과용 스캐너로 채득한 디지털 모형의 반복성 및 재현성에 관한 3차원적 평가 (Three-dimensional evaluation on the repeatability and reproducibility of dental scanner-based digital models)

  • 이경탁;김재홍;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제34권3호
    • /
    • pp.213-220
    • /
    • 2012
  • Purpose: The aim of this study was to determine the repeatability and reproducibility of two dental scanners. Methods: The master die and the stone replicas(Kavo, Germany) were digitized in touch-probe scanner(Incise, Renishaw, UK), white light scanner(Identica, Medit, Korea) to create 3-dimensional surface-models. The number of points in the point clouds from each reading were calculated and used as the CAD reference model(CRM). Discrepancies between the points in the 3-dimensional surface models and the corresponding CRM were measured by a matching-software(Power-Inspect R2, Delcam Plc, UK). The t-student test for one samples were used for statistical analysis. Results: The reproducibility of both scanner was within $3{\mu}m$, based on mean value. The mean value between measurements made directly on the touch probe scanner digital models and those made on the white light scanner digital models was $2.20-2.90{\mu}m$, and was statistically significant(P<0.05). Conclusion: With respect to adequate data acquisition, the reproducibility of dental scanner differs. Three-dimensional analysis can be applied to differential quality analysis of the manufacturing process as well as to evaluation of different analysis methods.

X-ray tube 내 열유동 해석에 관한 연구 (A study on the analysis of heat flow in X-ray tube)

  • 윤동민;서병석;전용한
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.26-31
    • /
    • 2021
  • As the aging ages, the disease also increases, and the development of AI technology and X-ray equipment used to treat patients' diseases is also progressing a lot. X-ray tube converts only 1% of electron energy into X-ray and 99% into thermal energy. Therefore, when the cooling time of the anode and the X-ray tube are frequently used in large hospitals, the amount of X-ray emission increases due to temperature rise, the image quality deteriorates due to the difference in X-ray dose, and the lifespan of the overheated X-ray tube may be shortened. Therefore, in this study, temperature rise and cooling time of 60kW, 75kW, and 90kW of X-ray tube anode input power were studied. In the X-ray Tube One shot 0.1s, the section where the temperature rises fastest is 0.03s from 0s, and it is judged that the temperature has risen by more than 50%. The section in which the temperature drop changes most rapidly at 20 seconds of cooling time for the X-ray tube is 0.1 seconds to 0.2 seconds, and it is judged that a high temperature drop of about 65% or more has occurred. After 20 seconds of cooling time from 0 seconds to 0.1 seconds of the X-ray tube, the temperature is expected to rise by more than 3.7% from the beginning. In particular, since 90kW can be damaged by thermal shock at high temperatures, it is necessary to increase the surface area of the anode or to require an efficient cooling system.

친환경 소재로 형성된 듀얼 펌프캡 용기의 낙하충격 시뮬레이션 분석 (An analysis on the drop impact simulation of dual pump cap container made of eco-friendly materials)

  • 위은찬;고민성;김현정;이중배;김민수;이주형;공정식;백승엽
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.57-65
    • /
    • 2021
  • Pump cap is a product that is widely used due to its ease of use and simple operation. These pump caps are applied to heterogeneous functional cosmetics and are being developed as dual pump caps. However, the conventional dual pump cap has a problem in that it is inconvenient to use and leakage occurs. In addition, it is formed of a plurality of materials, and there is a problem that is difficult to recycle. Lately, since the problem of environmental pollution is getting serious, the dual pump cap, which is difficult to recycle, cannot be used. Currently, eco-friendliness has been considered in Korea, and there are no dual pump cap containers with excellent sealing performance. Therefore, in this study, a dual pump cap container made of eco-friendly material was designed. In addition, finite element analysis was performed to verify the design feasibility of the product.