• 제목/요약/키워드: Die Deformation

검색결과 564건 처리시간 0.028초

대형단조에서의 미세기공 압착해석을 위한 유한요소법의 Global/Local 기법

  • 박치용;영동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.819-823
    • /
    • 1996
  • In the large steel ingosts, void defects exhibiting microvoid shapes are inevitably formed in the V-segregation zone of the ingots during solidification. In the hot open-die forging process, material properties are improved by eliminating internal porosity. The void size is practically very small as compared with the huge large ingot. Thus, for deformation analysis of a large ingot, a massive number of elements are needed in order to describe a void surface and to uniform mesh sturcture. In the present work the Global/Local scheme has been introduced in order to reduce the computational time and to easily generate the mesh system as a void module of local mesh for obtaining the accurate solution around a void. The procedure of the global- local method consists of two steps. In the first step global analysis is carried out which seeks a reasonably good solution with a cpurse mesh system without describing a void. Then, a local analysis is performed locally with a fine mesh system under the size-criterion of a local region. The computational time has been greatly reduced. Though the work it has been shown that large ingot forging incorporation small voids can be effectively analyzed by using the proposed Global/Local scheme.

  • PDF

판재 전단 가공에서 금형의 마멸 해석 (Analysis of Tool Wear in Sheet Metal Shearing)

  • 고대철;김태형;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.805-810
    • /
    • 1997
  • In this paper the technique to predict tool were theoretically in the sheet metal shearing process is suggested. The were in sheet metal tool affects the tolerances of final parts, metal flows and costs of processes. In order to predict the tool were the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained form finite element simulation such as node velocities and node forces are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the were rates on these points are accumulated during a process. It is assumed that the wear depth on the tool surface are linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is were is also discussed during the process.

  • PDF

Draw resonance in polymer processing: a short chronology and a new approach

  • Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제11권4호
    • /
    • pp.279-285
    • /
    • 1999
  • Draw resonance is both an important and interesting instability encountered in various extensional-deformation-dominated polymer processing operations. It is important because of its paramount relevance to the productivity and quality issue in the related industry: and it is interesting because of as yet unanswered questions as to what its cause and origin are in terms of physics involved. Specifically, a short chronological account of the draw resonance research is presented in this paper bringing several previous results together and focusing on the derivation of a new criterion for draw resonance based on the interaction of the traveling times of some kinematic waves propagating along the spinline from the die exit to the take-up position. The new explanation of draw resonance put forward here based on the physics of the system is seen to have wide implications on both theoretical and practical aspects of draw resonance instability. The importance of the role played by spinline tension in determining draw resonance is an example of the former whereas interpretation of the mechanism of the draw resonance eliminator is an example of the latter. Finally, an approximate yet a very fast and convenient method for determining draw resonance is also derived based on the above findings and found to agree well with the exact stability results.

  • PDF

Ti-6Al-4V 합금 3D 날개형상의 항온단조 공정설계 (Process Design of Isothermal Forging for Three-Dimensional Ti-6Al-4V Wing-Shape)

  • 염종택;박노광;이유환;신태진;홍성석;심인옥;황상무;이종수
    • 소성∙가공
    • /
    • 제14권2호
    • /
    • pp.126-132
    • /
    • 2005
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The main design priorities were to minimize forging loads and to distribute strain uniformly in a given forging condition. The FE simulation results for the final process design were compared with the isothermal forging tests. The instability of deformation was evaluated using a processing map based on the dynamic materials model(DMM), including flow stability criteria. Finally, a modified process design for producing a uniform Ti-6Al-4V wing product without forming defects was suggested.

보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향 (Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test)

  • 윤여웅;강성훈;이영선;김병민
    • 소성∙가공
    • /
    • 제18권8호
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

The effect of mechanical working on processing the Bi-2223/Ag tapes using PIT method

  • Oh, S.S.;Ha, D.W.;Kim, S.C.;Bae, S.W.;Kwon, Y.K.;Ryu, K.S.;Ha, H.S.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.276-279
    • /
    • 2000
  • When high temperature superconducting tapes is fabricated using the PIT (Powder In Tube) method, the length of HTS tapes is increased more than 500 ${\sim}$ 1,000 times of initial powder packed billet. On mechanical processing, heterogeneous properties between the ceramic superconducting core and Ag/Ag alloy sheath occur the non-uniformity deformation as like sausaging that deteriorate the critical current properties of HTS tapes. In this study, we investigated the workability of Bi-2223/Ag/Ag alloy sheath tapes fabricated by the PIT method involving a number of different mechanical processes, multi drawing and rolling. In order to obtain the high critical current density and high uniformity of Bi-2223/Ag sheath tapes, the influences of powder packing density, drawing die angle and rolling parameters were studied. We found that the roll diameter is an important variable in the rolling process, as critical current of tapes rolled using 250 mm rolls was higher than that using 150 mm rolls.

  • PDF

대변형 해석에서 평활화를 이용한 사면체 요소망의 재조성

  • 권기환;채수원;신상엽
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2397-2405
    • /
    • 2000
  • The remeshing is a method to replace a distorted mesh by a new mesh without interrupting the finite element calculation. The remeshing procedure in this paper refers to the rezoning, for which a sm oothing process is developed to alleviate the distortions of mesh. In the paper, an automatic finite element rezoning system with tetrahedral elements for large deformation analysis has been developed. Our smoothing process is composed of two steps, a surface smoothing and a volume smoothing. In the surface smoothing, checking the dihedral angle and projection on surface patch reduced the change of shape and nodes penetrating die. The constrained Laplacian smoothing has been employed for the volume smoothing process. The state variables are mapped from old mesh to new mesh by using volume coordinates within a tetrahedral element. All these procedures have been linked to the NIKE3D program As illustrated in the examples the overall strategy ensures a robust and efficient rezoning scheme for finite element simulation of metal-forming processes.

고온상태에서 마그네슘 합금의 디프드로잉 성형성에 관한 연구 (A Study on the Formability of Magnesium Alloy in Warm Temperature)

  • 강대민;황종관
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.84-90
    • /
    • 2003
  • Magnesium alloys have been paid attention In automotive and industries as lightweight materials, and with these materials it has been attempted at deep drawing process for assessment of formability of sheet metal. For warm deep drawing process with a local heating and cooling technique, both die and blank holder were heated at warm temperature while the punch was kept at room temperature by cooling water. Warm deep-drawing process with considering heat transfer was simulated by finite element method to investigate the improvement of deep-drawability and temperature distribution of Mg alloy sheet. The effect of sham rate sensitivity index on the deformation profile was considered in this work and the simulation results revealed that considering heat transfer is very effective for deep-drawability of Mg alloy. The deformed blank In considering heat transfer was drawn successfully without any localized thinning and the cup height is higher in contrast to results of simulations in considering no heat transfer.

  • PDF

수분사법으로 제조된 순철분말의 성형성에 미치는 분말크기의 영향 (Effect of Particle Size on Compactibility of Water-atomized Pure Iron Powder)

  • 이동준;윤은유;김하늘;강희수;이언식;김형섭
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.221-225
    • /
    • 2011
  • In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 ${\mu}M$, 75-106 ${\mu}M$, and 150-180 ${\mu}M$ for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 ${\mu}M$ of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.

세장비가 큰 사각컵 디프 드로잉의 유한요소 해석 (Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio)

  • 구태완;하병국;송우진;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF