• 제목/요약/키워드: Dictionary learning

검색결과 141건 처리시간 0.02초

Fast Super-Resolution Algorithm Based on Dictionary Size Reduction Using k-Means Clustering

  • Jeong, Shin-Cheol;Song, Byung-Cheol
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.596-602
    • /
    • 2010
  • This paper proposes a computationally efficient learning-based super-resolution algorithm using k-means clustering. Conventional learning-based super-resolution requires a huge dictionary for reliable performance, which brings about a tremendous memory cost as well as a burdensome matching computation. In order to overcome this problem, the proposed algorithm significantly reduces the size of the trained dictionary by properly clustering similar patches at the learning phase. Experimental results show that the proposed algorithm provides superior visual quality to the conventional algorithms, while needing much less computational complexity.

실버세대를 위한 동영상 영어사전의 개발 및 평가 (Development and Evaluation of Video English Dictionary for Silver Generation)

  • 김제영;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권11호
    • /
    • pp.345-350
    • /
    • 2020
  • 본 논문은 실버세대 영어학습자를 위한 모바일 학습 콘텐츠를 구현하고 이를 평가하여 이들을 위한 콘텐츠 설계시 고려해야 할 사항에 대해 분석하고자 하였다. 실버세대의 신체적, 학습적 특징과 요구사항 분석을 근거로 하여 영어학습 콘텐츠로 동영상 영어사전을 개발하였고 이를 평가하였다. 동영상 영어사전은 입력방식으로 OCR을, 출력방식으로 동영상을 활용하여 개발하였고 17명의 실버세대들을 대상으로 학업성취도, 학습만족도, 사용의 용이성을 평가하였다. 분석결과 문자 영어사전과 동영상 영어사전 모두 학습만족도가 높은 것으로 나타났으나 학업성취도와 사용의 용이성에서는 문자로 된 영어사전보다 동영상 영어사전이 더 높은 결과를 나타냈다.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

딕셔너리 러닝을 이용한 음파 신호 분류기 설계 (Acoustic Signal Classifier Design using Dictionary Learning)

  • 박성민;사성진;오광명;이희승
    • 자동차안전학회지
    • /
    • 제8권1호
    • /
    • pp.19-25
    • /
    • 2016
  • As new car technology is developing, temporal interaction is needed in automotive. Rhythmic pattern is one of the practical examples of temporal interaction in vehicle. To recognize rhythmic pattern and its input medium, dictionary learning is applicable algorithm. In this paper, performance and memory requirement of the learning algorithm is tested and is sufficiently good for use this acoustic sound.

4차원 Light Field 영상에서 Dictionary Learning 기반 초해상도 알고리즘 (Dictionary Learning based Superresolution on 4D Light Field Images)

  • 이승재;박인규
    • 방송공학회논문지
    • /
    • 제20권5호
    • /
    • pp.676-686
    • /
    • 2015
  • Light field 카메라를 이용하여 영상을 취득한 후 다양한 응용 프로그램으로 확장이 가능한 4차원 light field 영상은 일반적인 2차원 공간영역(spatial domain)과 추가적인 2차원 각영역(angular domain)으로 구성된다. 그러나 이러한 4차원 light field 영상을 유한한 해상도를 가진 2차원 CMOS 센서로 취득하므로 저해상도의 제약이 존재한다. 본 논문에서는 이러한 4차원 light field 영상이 가지는 해상도 제약 조건을 해결하기 위하여, 4차원 light field 영상에 적합한 딕셔너리 학습 기반(dictionary learning-based) 초해상도(superresolution) 알고리즘을 제안한다. 제안하는 알고리즘은 4차원 light field 영상으로부터 추출한 많은 수의 4차원 패치(patch)들을 바탕으로 딕셔너리를 구성 및 훈련하며, 학습된 딕셔너리를 바탕으로 저해상도 입력 영상의 해상도를 향상시키는 과정을 수행한다. 제안하는 알고리즘은 공간영역과 각영역의 해상도를 동시에 각각 2배 향상시킨다. 실험에 사용된 영상은 상용 light field 카메라인 Lytro에서 취득하였고 기존의 알고리즘과의 비교를 통해 제안하는 알고리즘의 우수성을 검증한다.

Encoding Dictionary Feature for Deep Learning-based Named Entity Recognition

  • Ronran, Chirawan;Unankard, Sayan;Lee, Seungwoo
    • International Journal of Contents
    • /
    • 제17권4호
    • /
    • pp.1-15
    • /
    • 2021
  • Named entity recognition (NER) is a crucial task for NLP, which aims to extract information from texts. To build NER systems, deep learning (DL) models are learned with dictionary features by mapping each word in the dataset to dictionary features and generating a unique index. However, this technique might generate noisy labels, which pose significant challenges for the NER task. In this paper, we proposed DL-dictionary features, and evaluated them on two datasets, including the OntoNotes 5.0 dataset and our new infectious disease outbreak dataset named GFID. We used (1) a Bidirectional Long Short-Term Memory (BiLSTM) character and (2) pre-trained embedding to concatenate with (3) our proposed features, named the Convolutional Neural Network (CNN), BiLSTM, and self-attention dictionaries, respectively. The combined features (1-3) were fed through BiLSTM - Conditional Random Field (CRF) to predict named entity classes as outputs. We compared these outputs with other predictions of the BiLSTM character, pre-trained embedding, and dictionary features from previous research, which used the exact matching and partial matching dictionary technique. The findings showed that the model employing our dictionary features outperformed other models that used existing dictionary features. We also computed the F1 score with the GFID dataset to apply this technique to extract medical or healthcare information.

Adaptive Compressed Sensing과 Dictionary Learning을 이용한 프레임 기반 음성신호의 복원에 대한 연구 (A Study on the Reconstruction of a Frame Based Speech Signal through Dictionary Learning and Adaptive Compressed Sensing)

  • 정성문;임동민
    • 한국통신학회논문지
    • /
    • 제37A권12호
    • /
    • pp.1122-1132
    • /
    • 2012
  • 압축센싱은 이미지, 음성신호, 레이더 등 많은 분야에 적용되고 있다. 압축센싱은 주로 통계적 특성이 시불변인 신호에 적용되고 있으며, 측정 데이터를 줄여 압축률을 높일수록 복원에러가 증가한다. 이와 같은 문제점들을 해결하기 위해 음성신호를 프레임 단위로 나누어 병렬로 처리하였으며, dictionary learning을 이용하여 프레임들을 sparse하게 만들고, sparse 계수 벡터와 그 복원값의 차를 이용하여 압축센싱 복원행렬을 적응적으로 만든 적응압축센싱을 적용하였다. 이를 통해 통계적 특성이 시변인 신호도 압축센싱을 이용하여 빠르고 정확한 복원이 가능함을 확인할 수 있었다.

Radioisotope identification using sparse representation with dictionary learning approach for an environmental radiation monitoring system

  • Kim, Junhyeok;Lee, Daehee;Kim, Jinhwan;Kim, Giyoon;Hwang, Jisung;Kim, Wonku;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1037-1048
    • /
    • 2022
  • A radioactive isotope identification algorithm is a prerequisite for a low-resolution scintillation detector applied to an unmanned radiation monitoring system. In this paper, a sparse representation with dictionary learning approach is proposed and applied to plastic gamma-ray spectra. Label-consistent K-SVD was used to learn a discriminative dictionary for the spectra corresponding to a mixture of four isotopes (133Ba, 22Na, 137Cs, and 60Co). A Monte Carlo simulation was employed to produce the simulated data as learning samples. Experimental measurement was conducted to obtain practical spectra. After determining the hyper parameters, two dictionaries tailored to the learning samples were tested by varying with the source position and the measurement time. They achieved average accuracies of 97.6% and 98.0% for all testing spectra. The average accuracy of each dictionary was above 96% for spectra measured over 2 s. They also showed acceptable performance when the spectra were artificially shifted. Thus, the proposed method could be useful for identifying radioisotopes in gamma-ray spectra from a plastic scintillation detector even when a dictionary is adapted to only simulated data. Furthermore, owing to the outstanding properties of sparse representation, the proposed approach can easily be built into an insitu monitoring system.

3차원 형태 특징의 사전 학습을 이용한 기하 복원 (Geometry Reconstruction Using Dictionary Learning of 3D Shape Features)

  • 황정민;윤여진;최수미
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권1호
    • /
    • pp.57-65
    • /
    • 2017
  • 본 논문에서는 포인트 클라우드로 구성된 모델 내의 오류를 줄이고, 기하학적 형태를 복원하기 위한 사전 학습 방법을 제시한다. 이를 위해, 대상 모델과 유사한 형태 특징을 갖는 모델로부터 3차원 특징 정보를 추출하여 사전을 구성하고, 이를 통해 기하 복원을 수행한다. 본 연구에서 제시한 방법은 다음과 같이 세 단계로 구성된다. 첫째, 유사 모델로부터 기하 패치를 구성하는 단계, 둘째, 획득한 패치의 3차원 형태 특징을 학습하는 단계, 셋째, 학습된 사전을 이용하여 기하를 복원하는 단계이며, 최종적으로 원본 모델과 복원 결과의 오차를 계산하며, 복원 결과의 정확도를 확인한다.

A Machine Learning Approach to Korean Language Stemming

  • Cho, Se-hyeong
    • 한국지능시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.549-557
    • /
    • 2001
  • Morphological analysis and POS tagging require a dictionary for the language at hand . In this fashion though it is impossible to analyze a language a dictionary. We also have difficulty if significant portion of the vocabulary is new or unknown . This paper explores the possibility of learning morphology of an agglutinative language. in particular Korean language, without any prior lexical knowledge of the language. We use unsupervised learning in that there is no instructor to guide the outcome of the learner, nor any tagged corpus. Here are the main characteristics of the approach: First. we use only raw corpus without any tags attached or any dictionary. Second, unlike many heuristics that are theoretically ungrounded, this method is based on statistical methods , which are widely accepted. The method is currently applied only to Korean language but since it is essentially language-neutral it can easily be adapted to other agglutinative languages.

  • PDF