• 제목/요약/키워드: Dice Similarity Coefficient (DSC)

검색결과 14건 처리시간 0.016초

연속 초음파영상에서의 바늘 검출을 위한 3D와 연속 영상문맥을 활용한 D-Attention Unet 모델 개발 및 평가 (Development and Evaluation of D-Attention Unet Model Using 3D and Continuous Visual Context for Needle Detection in Continuous Ultrasound Images)

  • 이소희;김종운;이수열;류정원;최동혁;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권5호
    • /
    • pp.195-202
    • /
    • 2020
  • Needle detection in ultrasound images is sometimes difficult due to obstruction of fat tissues. Accurate needle detection using continuous ultrasound (CUS) images is a vital stage of treatment planning for tissue biopsy and brachytherapy. The main goal of the study is classified into two categories. First, new detection model, i.e. D-Attention Unet, is developed by combining the context information of 3D medical data and CUS images. Second, the D-Attention Unet model was compared with other models to verify its usefulness for needle detection in continuous ultrasound images. The continuous needle images taken with ultrasonic waves were converted into still images for dataset to evaluate the performance of the D-Attention Unet. The dataset was used for training and testing. Based on the results, the proposed D-Attention Unet model showed the better performance than other 3 models (Unet, D-Unet and Attention Unet), with Dice Similarity Coefficient (DSC), Recall and Precision at 71.9%, 70.6% and 73.7%, respectively. In conclusion, the D-Attention Unet model provides accurate needle detection for US-guided biopsy or brachytherapy, facilitating the clinical workflow. Especially, this kind of research is enthusiastically being performed on how to add image processing techniques to learning techniques. Thus, the proposed method is applied in this manner, it will be more effective technique than before.

척추의 중심점과 Modified U-Net을 활용한 딥러닝 기반 척추 자동 분할 (Deep Learning-based Spine Segmentation Technique Using the Center Point of the Spine and Modified U-Net)

  • 임성주;김휘영
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.139-146
    • /
    • 2023
  • Osteoporosis is a disease in which the risk of bone fractures increases due to a decrease in bone density caused by aging. Osteoporosis is diagnosed by measuring bone density in the total hip, femoral neck, and lumbar spine. To accurately measure bone density in the lumbar spine, the vertebral region must be segmented from the lumbar X-ray image. Deep learning-based automatic spinal segmentation methods can provide fast and precise information about the vertebral region. In this study, we used 695 lumbar spine images as training and test datasets for a deep learning segmentation model. We proposed a lumbar automatic segmentation model, CM-Net, which combines the center point of the spine and the modified U-Net network. As a result, the average Dice Similarity Coefficient(DSC) was 0.974, precision was 0.916, recall was 0.906, accuracy was 0.998, and Area under the Precision-Recall Curve (AUPRC) was 0.912. This study demonstrates a high-performance automatic segmentation model for lumbar X-ray images, which overcomes noise such as spinal fractures and implants. Furthermore, we can perform accurate measurement of bone density on lumbar X-ray images using an automatic segmentation methodology for the spine, which can prevent the risk of compression fractures at an early stage and improve the accuracy and efficiency of osteoporosis diagnosis.

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • 제24권4호
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • 제24권8호
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.