• Title/Summary/Keyword: Diauxic growth curve

Search Result 2, Processing Time 0.02 seconds

Simulation of Dynamic Behavior of Glucose- and Tryptophan-Grown Escherichia coli Using Constraint-Based Metabolic Models with a Hierarchical Regulatory Network

  • Lee Sung-Gun;Kim Yu-Jin;Han Sang-Il;Oh You-Kwan;Park Sung-Hoon;Kim Young-Han;Hwang Kyu-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.993-998
    • /
    • 2006
  • We earlier suggested a hierarchical regulatory network using defined modeling symbols and weights in order to improve the flux balance analysis (FBA) with regulatory events that were represented by if-then rules and Boolean logic. In the present study, the simulation results of the models, which were developed and improved from the previou model by incorporating a hierarchical regulatory network into the FBA, were compared with the experimental outcome of an aerobic batch growth of E. coli on glucose and tryptophan. From the experimental result, a diauxic growth curve was observed, reflecting growth resumption, when tryptophan was used as an alternativee after the supply of glucose was exhausted. The model parameters, the initial concentration of substrates (0.92 mM glucose and 1 mM tryptophan), cell density (0.0086 g biomass/1), the maximal uptake rates of substrates (5.4 mmol glucose/g DCW h and 1.32 mmol tryptophan/g DCW h), and lag time (0.32 h) were derived from the experimental data for more accurate prediction. The simulation results agreed with the experimental outcome of the temporal profiles of cell density and glucose, and tryptophan concentrations.

Biosynthesis and Metabolism of Vitamin C in Suspension Cultures of Scutellaria baicalensis

  • Ahn, Young-Ock;Kwon, Suk-Yoon;Lee, Haeng-Soon;Park, Il-Hyun;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.451-455
    • /
    • 1999
  • The concentrations of L-ascorbic acid (AsA, ascorbate, vitamin C) and its biosynthetic and metabolically-related enzymes such as L-galactono-1,4-lactone dehydrogenase (GLDase), ascorbate peroxidase (APX), and ascorbate oxidase (ASO) were investigated in suspension cultures of Scutellaria baicalensis. Cells growing from 4 days after subculture (DAS) to 9 DAS and from 16 DAS to 19 DAS showed a diauxic growth, and then growth rapidly decreased with further culturing. The AsA content slowly increased to 19 DAS, reached a maximum at 21 DAS (ca $120\;{\mu}g/g$ dry cell wt), and then rapidly decreased with further culturing. GLDase and ASO activity were well correlated with the cell growth curve, showing a maximum at 19 DAS, whereas APX activity showed a good correlation with the changes in AsA content, showing a maximum at 21 DAS. The total ascorbate contents (reduced form, AsA, and oxidized form, dehydroascorbate, DHA) were markedly enhanced at 10 DAS when L-galactose and L-galactono-1,4-lactone (25 mM) were added to SH medium supplemented with 20 g/l sucrose at 9 DAS, by 5.5 and 6.8 times, respectively. DHA composed more than 90% of the total ascorbate contents in suspension cultures of S. baicalensis, even though the ratio of reduced to oxidized form slightly varied with cell growth stage. The results indicate that L-galactose and L-galactono-1,4-lactone are effective precursors of AsA in cell cultures of S. baicalensis, and that in vitro cultured cells provide suitable biomaterials for the study of biosynthesis and metabolism of AsA.

  • PDF