• Title/Summary/Keyword: Diaphragm shape

Search Result 70, Processing Time 0.023 seconds

A Study on the Acoustical Properties of Micro-speaker according to Comb Teeth Shape of the Diaphragm (진동판의 빗살주름무늬 형상에 따른 마이크로스피커의 음향특성에 관한 연구)

  • Lee, Tae-Keun;Kim, Byoung-Sam;Cho, Tae-Jea
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.124-131
    • /
    • 2008
  • There are many factors which affect the acoustical properties of a micro-speaker. Among the factors, the shape of the diaphragm is considered in this study. As an investigating method, the finite element methods and measurement techniques applied to study the acoustical properties according to diaphragm shape. In order to vary the stiffness of the diaphragm, the some patterns of comb teeth, such as the angle and the number of comb teeth, are applied to diaphragm. We can confirm that the change of the stiffness by the changing diaphragm shape affects the vibration and sound properties of the speaker. As a result, the reduction of the angle of the comb teeth increases the diaphragm stiffness and shifts the resonance frequency to a higher frequency range. The number of the comb teeth is related to the stiffness of the edge part.

Vibration Analysis of Micro Speaker Diaphragm (마이크로 스피커 다이어프램의 진동해석)

  • Hong, D.K.;Woo, B.C.;Ahn, C.W.;Han, G.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.551-554
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array is made. Therefore this study carried to decide shape of diaphragm, voice coil weight and thickness of diaphragm for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design factors that minimized 1st natural frequency and maximized 2nd natural frequency of diaphragm.

  • PDF

A Study on the Shape Design of Micro Speaker Diaphragm (마이크로 스피커 다이아프램의 형상설계에 관한 연구)

  • Hong, Do-Kwa;Woo, Byung-Chul;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.775-780
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array Is made. Therefore this study carried to decide design variables for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design variables.

A Behavioral Analysis of Curved Steel Box Bridge Associated with Diaphragm's Shape and Spacing (다이아프램 형상 및 간격에 따른 곡선 강박스거더의 거동해석)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.205-215
    • /
    • 2006
  • In this study 3-D shell FEM model was applied to analyze the behavior of curved steel box girders stiffened by diaphragms. The reliability of the analytical method has been proved by comparing with the existing results. It was also found from this analysis that main factors affecting a distortional stress are length of a girder, curvature of the girder, and spacing of diaphragms. A modelled bridge with 30m of span length and 40m of radius was analyzed to find an optimum spacing of diaphragm, and as a result of applying different spacings, 5m was found to be most appropriate to control the stress ratio regulated by specifications. In the effect of diaphragm shape, the rhamen-typed diaphragm is found to be more effective than the fully filled-up one in the range of opening ratio of 0.4 to 0.6. But, the fully filled-up diaphragm had more efficiency in terms of reducing the distortional stress than X-truss typed diaphragm.

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

Relationship Between Geometrical Stiffness of Diaphragm and Resonance Frequency for Micro-speaker (마이크로스피커 진동판의 등가탄성과 공명진동수의 연관성)

  • Oh, Sei-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.640-644
    • /
    • 2010
  • Information technology devices, such as cellular phones, MP3s and so on, due to restrictions of space, require thin and small micro-speakers to generate sound. The reduction of the size of micro-speakers has resulted in the decrease of sound quality, due to such factors as frequency range and sound pressure level. In this study, the acoustical properties of oval microspeakers has been studied as a function of pattern shape on the diaphragm. The other conditions of micro-speakers, except for the pattern, was not changed. When the pattern is present on the diaphragm and the shape of pattern was a whirlwind, the resonance frequency was reduced due to the decrease of tensile strength of diaphragm. The patterns presented in the semi-minor axis of diaphragm did not effect a change of resonance frequency. However, increasing the number of patterns in the semimajor axis of diaphragm became a reason for the decrease of resonance frequency on edge side. When the depth of pattern on edge side was increased, the resonance frequency was decreased due to reduction of geometrical stiffness. If the height of edge and dome were increased, the resonance frequency and geometrical stiffness rapidly increased. After reaching the maximum values, they began to decrease with the continuous increase of height.

Structural Behavior of Beam-to-Column Connections of Rectangular CFT Structures having Different Diaphragm Opening (콘크리트충전 각형강관구조의 다이아프램 개구부 형상에 따른 기둥-보 접합부 구조적 거동)

  • Kim, Ki Hoon;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.289-298
    • /
    • 2015
  • The steel tube of Concrete-Filled Tube(CFT) confines the concrete and the concrete restrains the buckling of the tube, The objective of this study is to investigate the influences of the opening shape of the through diaphragm in case of the rectangular CFT column-to-beam connection through the structural experiment. The experiment results are compared with analysis results obtained by using the FEM program. These results are shown that strength of the rectangular CFT column-to-beam connection have similar structural performance regardless of the opening shape if opening areas of the through diaphragm are same. Also in case the connection area/shape of the through diaphragm and the flange of H-beam are similar, it was ascertained that the bending stress occurred at the beam can be transferred to the column through the diaphragm.

Effect of corrugation structure and shape on the mechanical stiffness of the diaphragm

  • Kim, Junsoo;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.273-278
    • /
    • 2021
  • Here, we studied the change in the mechanical stiffness of a diaphragm according to the corrugation pattern. The diaphragm consists of a silicon oxide and nitride double layer; a corrugation pattern was formed by dry etching, and the diaphragm was released by wet etching. The fabrication of the thin film was verified using focused ion beam and scanning electron microscopy images. The mechanical stiffness of the diaphragm was obtained by measuring the surface vibration using a laser Doppler vibrometer while applying external sound pressure. Flat squares, diaphragms with square corrugations, and circular corrugation patterns were measured and compared. The stiffness of the diaphragm with a corrugation structure was found to be smaller than that without a corrugation structure; in particular, circular corrugation showed a better effect because of the high symmetry. Furthermore, the effect of corrugation was theoretically predicted. The proposed corrugated diaphragm showed comparable flexibility with the state-of-the-art MEMS microphone diaphragm.

Structural Behavior of Two-Seam Cold Formed Square CFT Column to Beam Connections (2심 냉간성형 각형 CFT기둥-보 접합부의 구조거동)

  • Oh, Heon-Keun;Kim, Sun-Hee;Park, Chan-Myun;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.81-90
    • /
    • 2012
  • The concrete-filled tube (CFT) column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. Its Solution, 2 members of ㄷchennel in which Internal diaphragm is installed were welded beforehand and the method of making Rectangular Steel Tube was proposed. According to upside and downside junction shape, Internal diaphragm suggested as symmetric specimen and asymmetric specimen. The upper and lower diaphragm of the Symmetric specimen used the same horizontal and The upper diaphragm of the Asymmetric specimen used the horizontal plate and the lower diaphragm used the vertically plate. In this research, 4 T-shape column to beam steps connections were tested with cyclic loading experiment in order to evaluate the structural capability of the offered connection. Symmetric specimens be a failure in 0.03rad from beam flange. And Asymmetric specimens be a failure in 0.05rad from column interface. The comparison results of All specimens shown similar to energy absorption capacity in 0.02rad.

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.