• 제목/요약/키워드: Diaphragm frequency

검색결과 89건 처리시간 0.025초

가열을 수반하는 Ludwieg Tube 유동에 대한 연구 (Study of the Periodic Ludwieg Tube Flow with Heat Addition)

  • 백승철;권순범;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.450-455
    • /
    • 2001
  • The time-dependent behavior of nonequilibrium condensation of moist air through the Ludwieg tube is investigated with a computational fluid dynamics(CFD) method. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The computational results are compared with the previous experiments using the Ludwieg tube with a downstream diaphragm. The results clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to nonequilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity, and the periodic excursions of the condensation shock wave are responsible for the total pressure loss.

  • PDF

Study of Moist Air Flow Through the Ludwieg Tube

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong;Toshiaki Setoguchi;Sigeru Matsuo;Raghu S. Raghunathan
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2066-2077
    • /
    • 2003
  • The time-dependent behavior of unsteady condensation of moist air through the Ludwieg tube is investigated by using a computational fluid dynamics (CFD) work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The predicted results are compared with the previous experiments using the Ludwieg tube with a diaphragm downstream. The present computations represent the experimental flows well. The time-dependent unsteady condensation characteristics are discussed based upon the present predicted results. The results obtained clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to unsteady condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity and it results from the periodic excursions of the condensation shock wave.

수정진동자를 이용한 메탈 삽입 테프론 다이어프램 압전소자모듈의제조 및 특성 (Fabrication and characteristic of metal insertedteflon diaphragm piezoeletric device module using quartz crystal oscillator)

  • 김경민;박성현;김성우;손원근;신병철
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.149-154
    • /
    • 2010
  • Top of the alumina body which is made according to plan has been printed using a screen printer equipment in order to print an electrode pattern. The electrode is connected with the quartz crystal oscillator of the piezoelectricity method which has a piezoelectric characteristic. The pressure contact department has been experimented using three type of the teflon. The teflon is good for pressure delivery vector but it is bad restitution. So we devised the structure which inserts the metal in the teflon. Bottom of the module is connected with the signal processing department which is planned in advance and then has investigated to characteristic. Therefore we have got the best output-voltage and frequency characteristic follows in the pressure.

이동통신 단말기용 통합 영구 자석 형태의 마이크로스피커 개발 (Development of Combined Permanent Magnet Type Microspeakers Used for Mobile Phones)

  • 황상문;이홍주;권중학;황건용;양용창
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.183-189
    • /
    • 2006
  • In mobile phones of multimedia era, microspeakers of high qualify sound are essential parts to generate human voice in speaker phone and MP3 song player. In this paper, two types of microspeakers, outer permanent magnet (PM) and combined PM type, are analyzed using electromagnetic, mechanical and their coupling analysis. For performance comparison, voice coil diameter is chosen as a design parameter to change excitation position and magnet volume for both types. For combined PM type, sound pressure level (SPL) is improved due to increased PM volume compared to outer PM type. Also, with the decreased voice coil diameter for combined PM type, the 1st resonant mode of the diaphragm is more efficiently excited due to concentrative excitation, resulting in lower and broader frequency range. Therefore, it can be said that the combined PM type microspeakers are more advantageous for high performance microspeaker which are essential for multimedia era.

멀티 오리피스를 이용한 에어스프링 동특성 개선에 관한 연구 (The Study on the improvement of dynamic characteristics with multi-orifice in airspring)

  • 김인수;황성호;한문성;고철수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2002
  • Vibration isolation technology using an air spring and laminated rubber bearing is widely used because it has excellent vibration isolation characteristics. In the part of that, we usually make use of the self-damped air suing. It is occupied two chambers, restrictor, diaphragm and load plate. Two chambers contain compressed air and the volume of chambers and the area of load plate give a definition of stiffness and load. The restrictor and the volume ratio of two chambers give a definition of damping ratio. The conventional model of restrictor is made of one orifice and it causes turbulent flow in the orifice at the region of large deflection. The stillness of air suing is larger and the damping is lower in the region of large deflection. In the multi-orifice case, the stiffness is similar to air spring with one orifice but damping ratio is larger than conventional air spring. And damping ratio is smaller than conventional air suing in small deflection region. Deflection is small in the region of high frequency so small damping is better than large damping. As a result, we can reduce the storage stiffness of air suing in the wide region of deflection and increase the damping ratio in the region of large deflection. After this, we will try to and the relation of Reynolds Number and Flow Resistance then we are going to make another restrictor for air spring to improve damping ratio and stiffness.

  • PDF

Brassiere 착용조건에 따른 신체의 형태적, 생리적 변화에 관한 심리적 연구 (A Experimental Study on the Formal and Physiological Change of Body according to the Wearing-Brassiere Condition.)

  • 박영득
    • 대한가정학회지
    • /
    • 제29권1호
    • /
    • pp.27-35
    • /
    • 1991
  • This study was carried out to investigate the influence of the various physiological function caused by brassiere wearing. The four experimental methods used in this study are as follows. For example, the Roentgen photographing, Body measurement by Sliding Gauge, the measurement of the Electrocardiogram and Blood Pressure. The results of the Electrocardiogram and Blood Pressure. The results of the investigation were as follows: 1. In experimental change by Sliding Gauge and Body measurement, The bust point was rised in order AB1>B2. The width of right and left bust point was decreased in order of A>B1>B2. According to, The supplementary effect of brassiere wearing was excellent in B2. 2. In the change of various organs by Roentgen photographing, The width of the chest and size of the heart were decreased in regular order of A>B1>B2. The diaphragm and the others were not showed change. 3. In the experimental result by measurement of the electrocardiogram, The interval of heart palpitation was decreased in order A>B1>B2 and the pulse frequency was similar. 4. In the experimental result by the blood pressure measurement, A had the highest blood pressure and B2 had the lowest pressure in all variables.

  • PDF

이동통신 단말기용 통합 영구 자석 형태의 마이크로스피커 개발 (Development of Combined Permanent Magnet Type Microspeakers Used for Mobile Phones)

  • 이홍주;황상문;권중학;황건용;양용창
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.497-502
    • /
    • 2005
  • In mobile phones of multimedia era, microspeakers of high quality sound are essential parts to generate human voice in speaker phone and MP3 song player. In this paper, two types of microspeakers, outer permanent magnet (PM) and combined PM type, are analyzed using electromagnetic, mechanical, acoustical and their coupling analysis. For performance comparison, voice coil diameter is chosen as a design parameter to change excitation position and magnet volume for both types. For combined PM type, sound pressure level (SPL) is improved due to increased PM volume compared to outer PM type. Also, with the decreased voice coil diameter for combined PM type, the 1st resonant mode of the diaphragm is more efficiently excited due to concentrative excitation, resulting in lower and broader frequency range. Therefore, it can be said that the combined PM type microspeakers are more advantageous for high performance microspeaker which are essential for multimedia era.

  • PDF

공압제진대용 이중챔버형 공압스프링의 복소강성 모형화 (Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table)

  • 이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

모세관 작용에 의한 콘택트 렌즈의 운동 모델 (Model on the Capillary Action-Induced Dynamics of Contact Lens)

  • 김대수
    • 한국안광학회지
    • /
    • 제6권2호
    • /
    • pp.85-97
    • /
    • 2001
  • 눈물 층을 사이에 두고 각막 위에 부착되어 있는 렌즈(하드렌즈)에는 모세관작용에 따른 장력이 렌즈가장자리에 균일하게 방사형으로 향하여 작용한다. 순목등에 의한 충격으로 평형상태의 렌즈가 평형 위치에서 벗어나게 되면 눈물층의 간격에 변화가 발생하고 이 변화에 의해 불균일 모세관작용에 기인하는 장력에 따라 렌즈에는 복원력이 발생하고 이 힘에 의해 렌즈는 감쇄운동(진동)을 하게 된다. 이러한 복원력을 계산하고 렌즈의 운동을 예측할 수 있는 미분방정식과 컴퓨터프로그램을 수립하였으며 이 컴퓨터 모델을 사용하여 렌즈의 구경, 베이스 커브, 눈물 층의 두께 등의 변수가 렌즈의 운동에 미치는 영향을 모사(模寫)하였다. 눈물층의 점성에 의한 마찰력이 관성력에 비해 크기 때문에 렌즈는 진동을 하지 않고 시간의 경과에 따라 일률적으로 변위가 감소하는 운동양상을 나타내고 있으며 렌즈의 구경이 증가할수록, 눈물층의 두께가 얇아질수록 복원력이 증가하며 따라서 렌즈가 원위치로 되돌아오는데 걸리는 시간이 짧아지고 있다. 그러나 렌즈의 베이스커브는 그 값이 특정 값을 가질 때 원위치 도달 시간이 최소가 된다. 렌즈의 공진진동수는 눈물층의 두께가 증가할수록 렌즈구경이 감소할수록 낮아지고 있으며 베이스커브가 특정 값을 가질 때 공진진동수 역시 최대가 된다. 실제로 콘택트렌즈를 착용한 상태에서 렌즈의 공진진동수와 동일한 진동수의 외부 충격이 렌즈에 가해지는 경우 급격한 렌즈의 상하 또는 좌우 진동이 예상되며 따라서 렌즈가 탈착 된다든지 또는 렌즈의 형상변형으로 인해 각막에 통증이 발생할 수도 있을 것이다. 고함수(高含水) 소프트렌즈와 강은 diaphragm 그 자체는 탄성이 거의 없다. 그러나 함수 소프트렌즈가 각막 상에 눈물 층을 사이에 두고 부착되어 있는 경우에는 눈물의 표면 장력에 의해 탄성이 유기(誘起)될 수 있으므로 진동의 영향이 있을 것으로 본다.

  • PDF

Internal and net roof pressures for a dynamically flexible building with a dominant wall opening

  • Sharma, Rajnish N.
    • Wind and Structures
    • /
    • 제16권1호
    • /
    • pp.93-115
    • /
    • 2013
  • This paper describes a study of the influence of a dynamically flexible building structure on pressures inside and net pressures on the roof of low-rise buildings with a dominant opening. It is shown that dynamic interaction between the flexible roof and the internal pressure results in a coupled system that is similar to a two-degree-of-freedom mechanical system consisting of two mass-spring-damper systems with excitation forces acting on both the masses. Two resonant modes are present, the natural frequencies of which can readily be obtained from the model. As observed with quasi-static building flexibility, the effect of increased dynamic flexibility is to reduce the first natural frequency as well as the corresponding peak value of the admittance, the latter being the result of increased damping effects. Consequently, it is found that the internal and net roof pressure fluctuations (RMS coefficients) are also reduced with dynamic flexibility. This model has been validated from experiments conducted using a cylindrical model with a leeward end flexible diaphragm, whereby good match between predicted and measured natural frequencies, and trends in peak admittances and RMS responses with flexibility, were obtained. Furthermore, since significant differences exist between internal and net roof pressure responses obtained from the dynamic flexibility model and those obtained from the quasi-static flexibility model, it is concluded that the quasi-static flexibility assumption may not be applicable to dynamically flexible buildings. Additionally, since sensitivity analyses reveal that the responses are sensitive to both the opening loss coefficient and the roof damping ratio, careful estimates should therefore be made to these parameters first, if predictions from such models are to have significance to real buildings.