• Title/Summary/Keyword: Diaphragm breathing

Search Result 63, Processing Time 0.03 seconds

Effects of Breathing Methods on Neck Muscle Activation in Subjects with a Forward Head Posture (호흡방법에 따른 전방머리자세의 목근육 활성도 변화)

  • Bae, Won-Sik;Lee, Hyun-Ok;Park, Du-Jin
    • PNF and Movement
    • /
    • v.15 no.2
    • /
    • pp.159-166
    • /
    • 2017
  • Purpose: This study attempts to determine the effects of applying three kinds of breathing exercises for four weeks on the neck muscle activation of subjects with a forward head posture. Methods: A total of 30 adults aged in their twenties (15 men and 15 women) with a forward head posture who voluntarily agreed to participate after listening to the purpose and procedure of this research were chosen as the subjects of this study. The subjects were randomly divided into either the diaphragmatic breathing exercise (DBE) group, the abdominal drawing-in maneuver (ADIM) group, or the abdominal expansion method (AEM) group according to the breathing intervention scheme. Each group included ten subjects. The muscle activity of the sternocleidomastoid, scalenus anterior, and splenius capitis was measured in all the groups prior to the intervention, two weeks after the intervention, and four weeks after the intervention. All the interventions were implemented for 30 minutes a day, three times a week, for a total of four weeks. Results: No significant between-group difference was observed in terms of the change in neck muscle activity according to the four-week intervention scheme. Further, there was no interaction between the intervention period and the intervention scheme in relation to the change in neck muscle activity. Conclusion: The results of this study suggest that abdominal expansion exercise is as effective as other breathing exercise methods for subjects with a forward head posture. We therefore expect that abdominal expansion exercise can be used as a scheme for the prevention of symptoms as well as therapy for patients with a forward head posture.

A Study on Matched Errors between PET and CT Images in PET/CT Examination According to Breathing Protocols (PET/CT 검사에서 호흡법에 따른 PET과 CT 영상의 정합오차)

  • Kim, Sang Un;Kwak, Dong Woo;Park, Hyeon Soo;Bang, Seong Ae;Park, Yeong Jae;LEE, In Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.7-10
    • /
    • 2013
  • Purpose : This study evaluated the effects of breathing protocols on matching results of PET and CT images using two breathing protocols such as free breathing and acquisition in holding the breathing after the normal expiration in acquiring CT images. Materials and Methods: Whole body FDG PET and CT images of 200 patients (mean age: 58 (range 20~84), 103 males and 97 females) using Discovery VCT (GE Healthcare, Milwaukee, USA). When taking CT images, subjects were asked to breathe freely (free breathing, n=100) or hold the breathing after the normal expiration (Hold, n=100). In the whole body image coronal section where PET and CT were matched, the matched error of the boundary between diaphragm and liver was measured in length. The matched errors were compared according to breathing protocol by age, sex and disease. The verification of statistical significance was made by SPSS 15.0 (SPSS Inc., Chicago, IL, USA) via one way ANOVA. Results: The matched error in all was 0.87 mm. According to breathing protocol, there was no significant difference in matched error as1.01 mm in free breathing and as 0.73 mm in hold breathing (p=.688). The matched error according to sex did not show significant difference as 1.08 mm of males, and 0.93 mm of females in free breathing (p=.517). In hold breathing, there was no significant difference as 0.79 mm of males and 0.66 mm of females (p=.738). There was no significant difference in matched error by age between free breathing and hold breathing (free breathing (p=.728), hold (p=.465). There was no significant difference in matched error by disease between free breathing and hold breathing (free breathing (p=.197), hold (p=.518) Conclusion: The difference in matched error between free breathing and hold breathing was less than 5 mm at 99%. There was no statistically significant difference in matched error by breathing protocol, age and disease. It was proved that there was no difference in matched error between PET and CT images according to breathing protocol during PET/CT scan.

  • PDF

The Effects of the Multiple Pulmonary Function in the 20s People of Mild Intellectual Disabilities to Balloons Blowing Exercise (풍선불기운동이 20대 경도 지적장애인의 복합적인 폐기능에 미치는 영향)

  • Seo, Kyo-Chul;Park, Seung-Hwan;Kim, Dae-Rong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.121-126
    • /
    • 2021
  • The purpose of this study is to investigate the effect of balloon blowing exercise on multiple pulmonary function and maximum voluntary ventilation in patients with mild intellectual disabilities in their 20s. 10 people in the experimental group and 10 people in the control group participated in the experiment. The experimental group performed the balloon blowing exercise for 30 minutes a day, and the control group performed the diaphragm breathing exercise for 30 minutes each. The subjects measured voluntary capacity and maximal voluntary ventilation using Fitmate before and after the experiment. Subjects were assessed with Vital capacity(VC) and Maximal voluntary ventilation(MVV) before and after the test and the results were compared with the paired t test. Data analysis was performed with SPSS win 18.0. After the experiment, the experimental group showed higher lung capacity and maximum ventilation than the control group. Through this study, the experimental group increased voluntary capacity and maximum voluntary ventilation more than the control group. It is thought that the quality of life can be improved if we continuously manage the health of intellectuals by developing various breathing exercise programs.

Development of an Advanced Deformable Phantom to Analyze Dose Differences due to Respiratory Motion

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Koo, Hyun-Jae;Cho, Min-Seok;Ha, Jin-Suk;Yoon, Do-Kun;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The difference between three-dimensional (3D) and four-dimensional (4D) dose could be affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate the characteristics. A phantom was designed to simulate diaphragm motion with amplitude in the range 1~7 cm and period up to ${\geq}2s$ of regular breathing. To simulate different tumors sizes, custom molds were created using a 3D printer and filled with liquid silicone. The accuracy of the phantom diaphragm motion was assessed by comparing measured motion with predicted motion. Because the phantom diaphragm motion is not identical to the tumor motion, the correlation between the diaphragm and tumor motions was calculated by a curve fitting method to emulate user-intended tumor motion. Tumors of different sizes were located at same position, and tumor set-up positions were evaluated. The accuracy of phantom diaphragm motion was better than 1 mm. The diaphragm-tumor correlation showed that the tumor motion in the superior-inferior direction increased with increasing diaphragm motion. The tumor motion was larger in the $10cm^3$ tumor than in the $90cm^3$ tumor. The range of difference between the tumor set-up positions was 0 to 0.45 cm. This phantom showed independently adjusting factors such as tumor size and motion to facilitate quantitative analysis of the dosimetric impact of respiratory motion according to these factors.

A Study on the Reduction of Organ Motion from Respiration (호흡 운동에 의한 내부 장기의 움직임 감소에 관한 연구)

  • Kim Jae-Gyoun;Lee Dong-Han;Lee Dong-Hoon;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Oh Won-Yong;Ji Young-Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2004
  • To deal with tumor motion from respiration is one of the important issues for the advanced treatment techniques, such as the intensity modulated radiation therapy (IMRT), the image guided radiation therapy (IGRT), the three dimensional conformal therapy (3D-CRT) and the Cyber Knife. Studies including the active breath control (ABC) and the gated radiation therapy have been reported. Authors have developed the device for reducing the respiration effects and the diaphragm motions with this device were observed to determined the effectiveness of the device. The device consists of four belts to immobilize diaphragm motion and the vacuum cushion. Diaphragm motions without and with device were monitored fluoroscopically. Diaphragm motion ranges were found to be 1.14 ~ 3.14 cm (average 2.14 cm) without the device and 0.72~1.95 cm (average 1.16 cm) with the device. The motion ranges were decreased 20 ~ 68.4% (average 44.9%.) However, the respiration cycle was increased from 4.4 seconds to 3.7 seconds. The CTV-PTV margin could be decreased significantly with the device developed in this study, which may be applied to the treatments of the tumor sited diaphragm region.

  • PDF

The Optimum of Respiratory Phase Using the Motion Range of the Diaphragm: Focus on Respiratory Gated Radiotherapy of Lung Cancer (횡격막의 움직임을 이용한 최적화된 호흡 위상의 선택: 폐암의 호흡 동기 방사선치료 중심)

  • Kim, Myoungju;Im, Inchul;Lee, Jaeseung;Kang, Suman
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.157-163
    • /
    • 2013
  • This study was to analyze quantitatively movement of planning target volume (PTV) and change of PTV volume through movement of diaphragm according to breathing phase. The purpose of present study was to investigate optimized respiration phase for radiation therapy of lung cancer. Simulated breathing training was performed in order to minimize systematic errors which is caused non-specific or irregular breathing. We performed 4-dimensional computed tomography (4DCTi) in accordance with each respiratory phase in the normalized respiratory gated radiation therapy procedures, then not only defined PTVi in 0 ~ 90%, 30 ~ 70% and 40 ~ 60% in the reconstructed 4DCTi images but analyzed quantitatively movement and changes of volume in PTVi. As a results, average respiratory cycle was $3.4{\pm}0.5$ seconds by simulated breathing training. R2-value which is expressed as concordance between clinically induced expected value and actual measured value, was almost 1. There was a statistically significant. And also movement of PTVi according to each respiration phase 0 ~ 90%, 30 ~ 70% and 40 ~ 60% were $13.4{\pm}6.4mm$, $6.1{\pm}2.9mm$ and $4.0{\pm}2.1mm$ respectively. Change of volume in PTVi of respiration phase 30 ~ 70% was decreased by $32.6{\pm}8.7%$ and 40 ~ 60% was decreased by $41.6{\pm}6.2%$. In conclusion, PTVi movement and volume change was reduced, when we apply a short breathing phase (40 ~ 60%: 30% duty cycle) range. Furthermore, PTVi margin considered respiration was not only within 4mm but able to get uniformity of dose.

M-mode Ultrasound Assessment of Diaphragmatic Excursions in Chronic Obstructive Pulmonary Disease : Relation to Pulmonary Function Test and Mouth Pressure (만성폐쇄성 폐질환 환자에서 M-mode 초음파로 측정한 횡격막 운동)

  • Lim, Sung-Chul;Jang, Il-Gweon;Park, Hyeong-Kwan;Hwang, Jun-Hwa;Kang, Yu-Ho;Kim, Young-Chul;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.736-745
    • /
    • 1998
  • Background: Respiratory muscle interaction is further profoundly affected by a number of pathologic conditions. Hyperinflation may be particularly severe in chronic obstructive pulmonary disease(COPD) patients, in whom the functional residual capacity(FRC) often exceeds predicted total lung capacity(TLC). Hyperinflation reduces the diaphragmatic effectiveness as a pressure generator and reduces diaphragmatic contribution to chest wall motion. Ultrasonography has recently been shown to be a sensitive and reproducible method of assessing diaphragmatic excursion. This study was performed to evaluate how differences of diaphragmatic excursion measured by ultrasonography associate with normal subjects and COPD patients. Methods: We measured diaphragmatic excursions with ultrasonography on 28 healthy subjects(l6 medical students, 12 age-matched control) and 17 COPD patients. Ultrasonographic measurements were performed during tidal breathing and maximal respiratory efforts approximating vital capacity breathing using Aloka KEC-620 with 3.5 MHz transducer. Measurements were taken in the supine posture. The ultrasonographic probe was positioned transversely in the midclavicular line below the right subcostal margin. After detecting the right hemidiaphragm in the B-mode the ultrasound beam was then positioned so that it was approximately parallel to the movement of middle or posterior third of right diaphragm. Recordings in the M-mode at this position were made throughout the test. Measurements of diaphragmatic excursion on M-mode tracing were calculated by the average gap in 3 times-respiration cycle. Pulmonary function test(SensorMedics 2800), maximal inspiratory(PImax) and expiratory mouth pressure(PEmax, Vitalopower KH-101, Chest) were measured in the seated posture. Results: During the tidal breathing, diaphragmatic excursions were recorded $1.5{\pm}0.5cm$, $1.7{\pm}0.5cm$ and $1.5{\pm}0.6cm$ in medical students, age-matched control group and COPD patients, respectively. Diaphragm excursions during maximal respiratory efforts were significantly decreased in COPD patients ($3.7{\pm}1.3cm$) when compared with medical students, age-matched control group($6.7{\pm}1.3cm$, $5.8{\pm}1.2cm$, p< 0.05}. During maximal respiratory efforts in control subjects, diaphragm excursions were correlated with $FEV_1$, FEVl/FVC, PEF, PIF, and height. In COPD patients, diaphragm excursions during maximal respiratory efforts were correlated with PEmax(maximal expiratory pressure), age, and %FVC. In multiple regression analysis, the combination of PEmax and age was an independent marker of diaphragm excursions during maximal respiratory efforts with COPD patients. Conclusion: COPD subjects had smaller diaphragmatic excursions during maximal respiratory efforts than control subjects. During maximal respiratory efforts in COPD patients, diaphragm excursions were well correlated with PEmax. These results suggest that diaphragm excursions during maximal respiratory efforts with COPD patients may be valuable at predicting the pulmonary function.

  • PDF

The Effect of Types of Respiratory Exercise on Respiratory Muscle Activity and Health-Related Quality of Life of Patients with Severe Chronic Obstructive Pulmonary Disease

  • Kang, Jeong-Il;Jeong, Dae-Keun;Choi, Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.46-51
    • /
    • 2016
  • Purpose: This study intended to classify voluntary respiratory exercise and exercise using breathing training equipment to suggest proper respiratory exercise to relieve symptoms of patients with severe chronic obstructive pulmonary disease. Methods: Sixteen subjects were randomly selected for experimental group I, which performed feedback breathing exercise and 15 subjects were randomly selected for experimental group II, which performed a complex breathing exercise. The mediation program was performed 30 minutes a session, once a day, three times a week, for five weeks. This study analyzed before and after results within groups and between groups through measurement of respiratory muscle activity and health-related quality of life. Results: Activity of sternocleidomastoid muscle and scalene muscle increased meaningfully within experimental group I and activity of diaphragm increased significantly within experimental group II (p<0.05) and there was a meaningful difference in health-related quality of life within experimental group II (p<0.05). Significant differences in change of activity of respiratory muscle and health-related quality of life were observed between groups (p<0.05). Conclusion: This study showed conflicting results between activity of agonist and synergist in patients with severe chronic obstructive pulmonary disease according to types of respiratory exercise and that complex respiratory exercise is more effective in health-related quality of life. Therefore, it found that the more severity increase, the more self-respiratory technique is an effective program. Diversified approach methods will be needed to improve respiratory function and quality of life for patients, and continuous clinical studies will be needed in the future.

The Effect of Passive Lung Expansion Technique and Active Respiration Enhancement Technique on Lung Function in Healthy Adults (수동폐확장과 능동호흡강화 기법이 건강한 성인 폐기능에 미치는 영향)

  • Lee, Donggin;Lee, Yeonseop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2020
  • Purpose : This study was conducted to investigate the effect of positive active pressure technique and active breathing technique on lung function in healthy adults. Methods : In this study, the passive lung expansion technique and active respiration enhancement technique using an air mask bag unit were conducted in 30 normal adults to observe changes in pulmonary function with forced vital capacity (FVC), Forced expiratory volume at one second (FEV1). In order to observe the change in the level of respiratory function, we would like to investigate the peak expiratory flow (PEF) and the forced expiratory flow (FEF 25-75 %). Results : As a result of this study, there was no significant difference in comparison between the passive lung expansion technique and the active breathing enhancement technique (p>.05). The passive lung expansion technique effectively increased the effortful expiratory volume and the median expiratory flow rate of 1 second (p<.05). And the passive lung expansion technique effectively increased the effortless lung capacity and the maximum expiration flow rate (p<.05). Conclusion : The passive lung expansion technique effectively increases the range of motion of the lungs and chest cages, intrathoracic pressure, and elasticity of the lungs, and the active breathing technique increases the muscle functions such as the diaphragm and the biceps muscles. It is expected that it will be able to selectively improve the respiratory function of patients with respiratory diseases or functional limitations as it is found to be effective.

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.