• Title/Summary/Keyword: Diamond crystal

Search Result 229, Processing Time 0.027 seconds

Field Emission Characteristics of Deffctive Diamond Films

  • Koh, Ken-Ha;Park, Kyung-Ho;Lee, Soon-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.160-166
    • /
    • 1998
  • The field emission characteristics of defective diamond films grown by microwave plasma enhanced chemical vapor deposition (MPECVD) have been studied. X-ray diffraction, the poor crystal quality and/or small grain sizes of the diamond phase and the inclusion of the non-diamond carbon phases in these films have been condirmed by raman spectroscopy, scanning electron microscopy, atomic force microscopy, and the reflectance measurements. The degrees of the film defectiveness and the emission characteristics were dependent on the methane concentration. Current-versus-voltage measurements have demonstrated that the defective diamond films have good electron emission characteristics. characteristics strongly suggests the defect-related electron-emission mechanism. The defective diamond films deposited on Si substrates show the field emission current density of 1$\mu\textrm{A}/\textrm{cm}^2$ and 1mA/$\textrm{cm}^2$ have been measured at electric fields as low as 4.5V/$\mu\textrm{m}$ and 7.6V/$\mu\textrm{m}$, respectively. We also observed the similar emission characteristics from the defective diamond film deposited on Cr/Si substrate and could decrease the deposition temperature to $600^{\circ}C$.

  • PDF

NITROGEN DOPED DIAMOND LIKE CARBON FILM SYNTHESIZED BY MICROWAVE PLASMA CVD

  • Urao, Ryoichi;Hayatsu, Osamu;Satoh, Toshihiro;Yokota, Hitoshi
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-555
    • /
    • 1996
  • Diamond Like Carbon film is amorphous film which is considered to consist of three coordinate graphite structure and tetrahedron coordinate diamond structure. Its hardness, thermal conductivity and chemical stability are nearly to one of diamond. It is well known to become semi-conductor by doping of inpurity. In this study Diamond Like Carbon film was synthesized by Microwave Plasma CVD in the gas mixture of hydrogen-methan-nitrogen and doped of nitrogen on the single-crystal silicon or silica glass. The temperature of substrate and nitrogen concentration in the gas mixture had an effect on the bonding state, structural properties and conduction mechanism. The surface morphology was observed by Scanning Electron Microscope. The strucure was analyzed by laser Raman spectrometry. The bonding state was evaluated by electron spectroscopy. Diamond Like Carbon film synthesized was amorphous carbon containing the $sp^2$ and $sp^3$ carbon cluster. The number of $sp^2$ bonding increased as nitrogen concentration increased from 0 to 40 vol% in the feed gas at 1233K substrate temperature and at $7.4\times10^3$ Pa. Increase of nitrogen concentration made Diamond Like Carbon to be amorphous and the doze of nitragen could be controlled by nitrogen concentration of feed gas.

  • PDF

Detection of Bio-chemical by Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 생체화학물질의 검출)

  • Kim, Gyu-Sik;Einaga, Y.;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.569-572
    • /
    • 2001
  • Selective. highly stable determination of epinephrine(adrenalin) was achieved in cyclic voltammetric measurement carried out at electrochemically treated conductive boron-doped diamond electrode. Boron-doped diamond electrodes were prepared on single crystal Si wafers by microwave plasma chemical vapor deposition and $B_{2}O_{3}$ was dissolved in acetone/methanol(9:1) mixture solution so that the B/C weight ratio ca. $10^{4}ppm$. Epinephrine is a kind of catecholamines, which secreted from adrenal marrow cells. The serious problem to detection of epinephrine is the interference phenomena of electroactive constituent. including AA. In this study. electrochemical treatment of BDD was carried out to discriminate between epinephrine and AA responses. Experimental results showed that the peak potential of AA oxidation shift to the positive direction and the oxidation peak of epinephrine was unchanged. The effect of electrochemical treatment was maintained up to 40hrs.

  • PDF

Detection of Bio-chemical by Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 생계화학물질의 검출)

  • ;榮長 泰明;藤嶋 昭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.569-572
    • /
    • 2001
  • Selective, highly stable determination of epinephrine(adrenalin) was achieved in cyclic voltammetric measurement carried out at electrochemically treated conductive boron-doped diamond electrode. Boron-doped diamond electrodes were prepared on single crystal Si wafers by microwave plasma chemical vapor deposition and B$_2$O$_3$ was dissolved in acetone/methanol(1:1) mixture solution so that the B/C weight ratio ca. 10$^3$ppm.. Epinephrine is a kind of catecholamines, which secreted from adrenal marrow cells. The serious problem to detection of epinephrine is the interference phenomena of electroactive constituent, including AA. In this study, electrochemical treatment of BDD was carried out to discriminate between epinephrine and AA responses. Experimental results showed that the peak potential of AA oxidation shift to the positive direction and the oxidation peak of epinephrine was unchanged. The effect of electrochemical treatment was maintained up to 40hrs.

  • PDF

A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application (다이아몬드 코팅 와이어로 가공된 태양전지용 실리콘 웨이퍼의 표면 특성에 관한 연구)

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.225-229
    • /
    • 2011
  • Most of the silicon cutting methods using the multi-wire with the slurry injection have been used for wafers of the crystalline solar cell. But the productivity of slurry injection cutting type falls due to low cutting speeds. Also, the direct contact with the metal wire and silicon block increases the concentration of metallic impurities in the wafer's surface. In addition, the abrasive silicon carbide (SiC) generates pollutants. And production costs are rising because it does not re-use the worn wire. On the other hand, the productivity of the cutting method using the diamond coated wire is about 2 times faster than the slurry injection cutting type. Also, the continuous cutting using the used wire of low wear is possible. And this is a big advantage for reduced production costs. Therefore, the cutting method of the diamond coated wire is more efficient than the slurry injection cutting technique. In this study, each cutting type is analyzed using the surface characteristics of the solar wafer and will describe the effects of the manufacturing process of the solar cell. Finally, we will suggest improvement methods of the solar cell process for using the diamond cutting type wafer.

Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold (단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성)

  • Kim, Chang-Eui;Jeon, Eun-chae;Je, Tae-Jin;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

Phase Transition of Single Crystal Silicon by Scratching Test (Scratching 시험에 의한 단결정 실리콘의 상전이)

  • 오한석;정성민;김현호;박성은;이홍림
    • Korean Journal of Crystallography
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2001
  • The mechanical properties of silicon crystals are important from the viewpoint of wafer and device fabrication processes. It is now widely recognized that silicon undergoes a series of phase transformations when subjected to high pressures, using conventional high pressure devices, such as diamond anvils or indenters. Diamond tip scratching on a silicon surface in the various conditions introduces various kinds of mechanical damage and stressed states. Micro Raman spectroscopy was used to observe the phase transition of single crystal silicon. As results, different morphologies were observed as functions of scratching speed and loading condition and various phases were observed as functions of scratching speed and loading condition.

  • PDF

Micro Machining Characteristics of V-shaped Single Crystal Diamond Tool with Ductile Workpiece (V형 다이아몬드공구에 의한 연질소재의 미세절삭특성 연구)

  • Hong, Sung-Min;Je, Tae-Jin;Lee, Dong-Ju;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.28-33
    • /
    • 2005
  • Recently, trends of TFT-LCD toward larger scale and thinner thickness continue. so, demands of Light Guide Panel (LGP) which is to substitute for prism sheet are appeared. Functions of LGP obtaining polarization of light of the prism sheet as well as the incidence and reflection of light are demanded. This prism type LGP to complete functions of the existing LGP and polarization at once must be supported by micro machining technology of LGP surface. In this research, the machining characteristics of the various materials were analysed by shaping using V-shaped single crystal diamond tool. The characteristics are machined surface, machining force due to the variation of cutting depth. Used specimens are engineering materials, which are 6:4 brass, oxygen-free copper, Al6061, PC, PMMA. The FFT analysis of the measured cutting force was conducted. The cutting characteristics were analyzed and the optimum cutting conditions with materials were established.

  • PDF

Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam (집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작)

  • Baek, Seung Yub;Jang, Sung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.