• Title/Summary/Keyword: Diamond crystal

Search Result 229, Processing Time 0.023 seconds

A study on the development of jewelry design based on the diamond crystal structure (다이아몬드 결정구조를 모티브한 주얼리 디자인 개발에 관한 연구)

  • Eunju Park;Soi Moon;Jeongwon Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.158-164
    • /
    • 2023
  • The meaning of the diamond crystal structure and the formative beauty of the crystal form were designed from a new perspective and expressed in jewelry. In this study, we examined the literature on the crystal structure of diamonds and analyzed cases of jewelry design based on the formative characteristics of diamond crystal structure. we newly interpreted the meaning and value of diamond crystal structure, and studied the figurative design that can show the aesthetic effect of the crystal structure by designing the diamond crystal structure as jewelry. By presenting jewelry designs that take advantage of the symmetry effect of the diamond crystal structure and the repetition of the sculptural beauty, we hope that the fundamental beauty and cultural meaning of gemstones will be re-recognized.

Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD (HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성)

  • Kim, Min Su;Bae, Mun Ki;Kim, Seong-Woo;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

Improving the Crystallinity of Heteroepitaxial Single Crystal Diamond by Surface Modification (표면개질에 의한 헤테로에피텍시 단결정 다이아몬드의 결정성 향상)

  • Bae, Mun Ki;Kim, Min Su;Kim, Seong Woo;Yoon, Su Jong;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.124-128
    • /
    • 2020
  • Recently, many studies on growth of single crystal diamond using MPECVD have been conducted. The heteroepitaxial method is one of the methods for growing diamonds on a large-area substrate, and research on synthesis of single crystal diamonds using SrTiO3, MgO, and sapphire substrates has been attempted. In addition, research is being conducted to reduce the internal stress generated during diamond growth and to improve the crystallinity of the diamond. The compressive stress generated therein causes peeling and bowing from the substrate. This study aimed to synthesize heteroepitaxial single crystal diamonds with high crystallinity by surface modification. A diamond thin film was first grown on a sapphire/Ir substrate by MPECVD, and then etched with H2 gas to modified the morphology and roughness of the surface. A secondary diamond layer was grown on the surface, and the internal stress, crystallinity of the diamond were investigated. As a result, the fabrication of single crystal diamonds with improved crystallinity was confirmed.

A Study on the Tool Wear and Prediction of CBN, Poly Crystal and Single Crystal Diamond Tools in Cutting of Nickel (니켈절삭시 CBN, 소결 및 단결정 다이아몬드 공구의 마멸과 예측에 관한 연구)

  • 성기석;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • Generally, the machinability of materials that have a good mechanical properties is poor. For materials having a high strength, high toughness, high strength in high temperature and wear resistance, it is difficult to remove a chip from work materials. These properties are well shown in a Nickel, so this metal is used in machine materials, semi-conductor industry, metal mold and optical fields etc. But it is limitted in use because of high cost and poor machinability. In this study, the cutting of pure Nickel was conducted to examine wear of CBN, poly crystal diamond (PCD) and single crystal diamond (SCD) tools. From the result, the CBN tool is superior to poly crystal diamond tools or single crystal diamond tools in terms of tool wear and tool wear is predictable from experimental data base.

On the Possibility of Bulk Large Diamond Single Crystal Synthesis with Hydrothermal Process

  • Andrzej M. Szymanski
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.18-32
    • /
    • 1997
  • Analysis of geological data, relating to occurrence and formation of diamonds as well as host rocks, inclined author to have different outlook on the diamond genesis and to establish a proposition on their formation at pneumatolytic-hydrothermal conditions near superficial Earth zones. Based on that theoretical foundations and experimental works, the first low-pressure and low-temperature hydrothermal diamond synthesis from water solution in pressure autoclave was executed. As a result, the natural diamond seed crystal grew bigger ad coupling of the synthetic diamond single-crystalline grains were obtained. SEM documentation proofs that parallely paragenetic crystallization of quartz and diamond, and nucleation of new octahedral diamond crystals brush take place on the seed crystal surface. Forecast of none times growth of diamond industrial application at 2000 and seventeen times at 2010 with reference to 1995, needs technology of large and pure single-crystals diamond synthesis. Growth of the stable and destressed diamond single-crystals in the pseudo-metastable diamond plot, may be realized with processes going through the long time and with participation of free radicals catalysts admixtures only. Sol-gel colloidal processes are an example of environment which form stable crystals in thermodynamically unstable conditions through a long time. Paper critically discusses a whole way of studies on the diamond synthesis, from high-pressure and high-temperature processes through chemical vapour deposition up to hydrothermal experiments.

  • PDF

A Study on the Precision Cutting Characteristics by the Diamond Tool on the Cutting Distance (다이아몬드 공구의 절삭거리에 따른 정밀가공 특성 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.127-133
    • /
    • 1998
  • This research intends to gain the sight for the qualitative characteristics of precision cutting by using the CNC lathe with a mono-crystal diamond(MCD) and a poly-crystal diamond(PCD) tool on the cutting distance. In case of an MCD tool, as the cutting distance increases, the surface roughness becomes worse and the standard deviation of surface roughness is small. In case of a PCD tool, as the cutting distance increases, the surface roughness becomes stable with a large standard deviation. The cutting force ratio(Ft/Fn) decreases as the nose radius increases and the decreasing ratio becomes larger for small nose radius.

  • PDF

The lapping characteristics of single crystal diamond(1st report) -lapping anisotropy of the crystal planes- (단결정 다이아몬드의 연마특성(1)-각 결정면의 연마 이방성-)

  • Jang, Kwang-Kyun;Uegami, Kenjiro;Tamamura, Kentaro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.147-152
    • /
    • 1993
  • The lapping characteristics of single crystal diamond are studied by considering the crystallographic anisotropy. It is introduced for lapping method to identify crystallographic orientantion by the X-ray diffraction and to measure lapping force ratio, lapping temperature and lapping wear. Diamound bonded wheels are used for lapping under dry condition. On the lapping {110} and {100} planes, it shows remarkable crystallographic anistropy. The lapping force ratio, temperature and wear become gerater with sliding direction along the <100> than along <110>. The results also show that the wear of diamond is influenced by mechanical work(tangential lapping force * lapping distance) as well by lapping speed.

  • PDF

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Wear of Single Crystal Diamond(SCD) Tools in Ultra Precision Turning of Electro-Nickel Plated Drum (전해니켈도금된 대면적 롤금형 가공시 단결정 다이아몬드공구의 마모에 관한 연구)

  • Lee, D.Y.;Hong, S.H.;Kang, H.C.;Choi, H.Z.;Lee, S.W.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.621-628
    • /
    • 2009
  • Nickel-phosphorus alloys are attractive materials for diamond turning applications such as fabrication of large optics and other high precision parts. It is also well-known that the higher phosphorus content of the alloys minimizes the diamond tool wear. Due to the weakness of electoless nickel plating that the phosphorus contents is limited to 13-14% (wgt), increased attention has been paid at electro-nickel plating which enables the alloys with 15-16% phosphorus. In this study, experiments were carried out to observe the wear characteristic of single crystal diamond tools in micro-grooving of electro-nickel plated drums. The experiments shows that long distance (50km) machining of micro-grooving on electro-nickel plated drum is possible with a single crystal diamond tool without any significant tool wear and defective machined surface.

The formation of diamond films on high speed steel with a titanium inter- layer by electron-assisted CVD process (화학증착법에 의한 티타늄 피복된 고속도강에의 다이아몬드 박막 형성)

  • 정연진;이건영;이호진;최진일
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The characteristics of interface layer and the effect of bias voltages on the nucleation density and heteroepitaxial growth of diamond films were studied in the hot filament CVD diamond process. Diamond films were deposited on a high speed steel (SKH-51) substrate by bias-assisted hot filament CVD technique with a titanium interlayer. The bias applied for enhancing the emission of electrons from the filament increased the nucleation density and achieving heteroepitaxial growth of CVD diamond. Diamond films obtained at a gas pressure of 20 torr; a bias voltage of 200 V and a substrate temperature of $700^{\circ}C$. Titanium was a suitable element as an interlayer for the diamond deposition on steel because it has high diffusivity of Fe and C as a carbide forming element.