• Title/Summary/Keyword: Diamond composites

Search Result 44, Processing Time 0.02 seconds

Durability Test and Micro-Damage Formation of Rubber Hose for Automotive Hydraulic Brake (자동차 유압브레이크용 고무호스의 내구성 시험 및 미세손상에 관한 연구)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Lim, Young-Han
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • Rubber hose assembly for automotive hydraulic brake during operation is subject to combined stresses of cyclic pressure, cyclic bending and torsion as well as thermal load. The rubber hose is composed of ethylene-propylene diene monomer(EPDM) rubber layers reinforced by polyvinyl acetate(PVA) braided fabrics. A durability tester with loading rigs for inducing the above cyclic stresses was used to investigate failure mechanisms in the rubber hose assembly. Failure examination was performed at every 100 thousands cycles of bending and torsion. Hose samples were sectioned with a diamond-wheel cutter and then polished. The polished surface was observed by optical microscope and scanning electron microscope (SEM). Some interfacial delamination with a length of about 1mm along the interface between EPDM rubber and PVA fabrics was shown at the test cycles of 400,000. The delamination induced some cracking into the outer rubber skin layer to leading the final rupture of the hose.

EFFECT OF LIGHT IRRADIATION MODES ON THE MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATION (광조사 방식이 복합레진 수복물의 변연누출에 미치는 영향)

  • 박은숙;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • The aim of this study was to investigate the influence of four different light curing modes on the marginal leakage of Class V composite resin restoration. Eighty extracted human premolars were used. Wedge-shaped class Y cavities were prepared on the buccal surface of the tooth with high-speed diamond bur without bevel. The cavities were positioned half of the cavity above and half beyond the cemento-enamel junction. The depth, height, and width of the cavity were 2 mm, 3 mm and 2 mm respectively. The specimens were divided into 4 groups of 20 teeth each. All the specimen cavities were treated with Prime & Bond$^{R}$ NT dental adhesive system (Dentsply DeTrey GmbH, Germany) according to the manufacturer's instructions and cured for 10 seconds except group VI which were cured for 3 seconds. All the cavities were restored with resin composite Spectrum$^{TM}$ TPH A2 (Dentsply DeTrey GmbH, Germany) in a bulk. Resin composites were light-cured under 4 different modes. A regular intensity group (600 mW/${cm}^2$, group I) was irradiated for 30 s, a low intensity group (300 mW/${cm}^2$, group II) for 60 s and a ultra-high intensity group (1930 mW/${cm}^2$, group IV) for 3 s. A pulse-delay group (group III) was irradiated with 400 mW/${cm}^2$ for 2 s followed by 800 mW/${cm}^2$ for 10 s after 5 minutes delay. The Spectrum$^{TM}$ 800 (Dentsply DeTrey GmbH, Germany) light-curing units were used for groups I, II and III and Apollo 95E (DMD, U.S.A.) was used for group IV. The composite resin specimens were finished and polished immediately after light curing except group III which were finished and polished during delaying time. Specimens were stored in a physiologic saline solution at 37$^{\circ}C$ for 24 hours. After thermocycling (500$\times$, 5-55$^{\circ}C$), all teeth were covered with nail varnish up to 0.5 mm from the margins of the restorations, immersed in 37$^{\circ}C$, 2% methylene blue solution for 24 hours, and rinsed with tap water for 24 hours. After embedding in clear resin, the specimens were sectioned with a water-cooled diamond saw (Isomet$^{TM}$, Buehler Co., Lake Bluff, IL, U.S.A.) along the longitudinal axis of the tooth so as to pass the center of the restorations. The cut surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan) at ${\times}$25 magnification, and the images were captured with a CCD camera (GP-KR222, Panasonic, Japan) and stored in a computer with Studio Grabber program. Dye penetration depth at the restoration/dentin and the restoration/enamel interfaces was measured as a rate of the entire depth of the restoration using a software (Scion image, Scion Corp., U.S.A.) The data were analysed statistically using One-way ANOVA and Tukey's method. The results were as follows : 1. Pulse-Delay group did not show any significant difference in dye penetration rate from other groups at enamel and dentin margins (p>0.05) 2. At dentin margin, ultra-high intensity group showed significantly higher dye penetration rate than both regular intensity group and low intensity group (p<0.05). 3. At enamel margin, there were no statistically significant difference among four groups (p>0.05). 4. Dentin margin showed significantly higher dye penetration rate than enamel margin in all groups (p<0.05).

  • PDF

Preparation and Physical Properties of Diamond Grade Reflective Sheets Using Microprism (마이크로프리즘을 사용한 초고휘도 재귀반사시트의 제조 및 특성)

  • Lee, Min-Ho;Lim, Du-Hyun;Heo, Min-Yeong;Ahn, Jou-Hyeon;Park, Jin-Woo;Yu, Ji-Hyun;Kim, Jong-Seon;Ryu, Ho-Suk;Ahn, Hyo-Jun;Kim, Ik-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.284-289
    • /
    • 2011
  • Prismatic reflective sheets were prepared using microprisms, and their retroreflection and structural properties were investigated and compared with encapsulated lens type reflective sheets based on glass beads. As prepared, the prismatic reflective sheets show well arranged array of microprisms. The arrangement of glass beads in encapsulated lens type reflective sheets is also found to be uniform without any cracks. However, during the coating process of the PET layer, the beads are coming out and the gaps are formed due to the application of high pressure. Even though the preparation method for reflective sheets based on microprisms is similar to that of reflective sheets based on glass beads, the method is relatively simple and cost effective, and also needs less time. Prismatic reflective sheets show higher coefficient of retroreflection from all entrance angles compared to reflective sheets based on glass beads. The results prove that the prismatic reflective sheets can be used for preparing the traffic sign boards to secure a clear view.

MICROLEAKAGE OF MICROFILL AND FLOWABLE COMPOSITE RESINS IN CLASS V CAVITY AFTER LOAD CYCLING (Flowable 및 microfill 복합레진으로 충전된 제 5급와동에서 load cycling 전,후의 미세변연누출 비교)

  • Kang, Suk-Ho;Kim, Oh-Young;Oh, Myung-Hwan;Cho, Byeong-Hoon;Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.142-149
    • /
    • 2002
  • Low-viscosity composite resins may produce better sealed margins than stiffer compositions (KempScholte and Davidson, 1988: Crim, 1989). Plowable composites have been recommended for use in Class V cavities but it is also controversial because of its high rates of shrinkage. On the other hand, in the study comparing elastic moduli and leakage, the microfill had the least leakage (Rundle et at. 1997) Furthermore, in the 1996 survey of the Reality Editorial Team, microfills were the clear choice for abfraction lesions. The purpose of this study was to evaluate the microleakage of 6 compostite resins (2 hybrids, 2 microfills, and 2 flowable composites) with and without load cycling. Notch-shaped Class V cavities were prepared on buccal surface of 180 extracted human upper premolars on cementum margin. The teeth were randomly divided into non-load cycling group (group 1) and load cycling group (group 2) of 90 teeth each. The experimental teeth of each group were randomly divided into 6 subgroups of 15 samples. All preparations were etched, and Single bond was applied. Preparations were restored with the following materials (n=15) : hybrid composite resin [Z250(3M Dental Products Inc. St. Paul, USA), Denfil(Vericom, Ahnyang, Korea)], microfill [Heliomolar RO(Vivadent, Schaan, Liechtenstein), Micronew(Bisco Inc. Schaumburg, IL, USA)], and flowable composite[AeliteFlo(Bisco Inc. Schaumburg, IL, USA), Revolution(Kerr Corp. Orange, CA, USA)]. Teeth of group 2 were subjected to occlusal load (100N for 50,000 cycles) using chewing simulator(MTS 858 Mini Bionix II system, MTS Systems Corp. Minn. USA). All samples were coated with nail polish 1mm short of the restoration, placed in 2% methylene blue for 24 hours, and sectioned with a diamond wheel. Enamel and dentin/cementum margins were analyzed for microleakage on a sclale of 0 (no leakage) to 3 (3/3 of wall). Results were statistically analyzed by Kruscal-Wallis One way analysis, Mann-Whitney U-test, and Student-Newmann-Keuls method. (p = 0.05) Results : 1. There was significantly less microleage in enamel margins than dentinal margins of all groups (p<0.05) 2. There was no significant between six composite resin in enamel margin of group 1. 3. In dentin margin of group 1, flowable composite had more microleakage than others but not of significant differences. 4. there was no significant difference between six composite resin in enamel margin of group 2. 5. In dentin margin of group 2, the microleakage were R>A =H=M>D>Z. But there was no significant differences. 6. In enamel margins, load cycling did not affect the marginal microleakage in significant degree. 7. In enamel margins, load cycling did affect the marginal microleakage only in Revolution. (p<0.05).