• Title/Summary/Keyword: Diamond composites

Search Result 44, Processing Time 0.202 seconds

Chromium Carbide Coating on Diamond Particle Using Molten Salts (용융염을 이용한 다이아몬드 표면의 크롬카바이드 코팅)

  • Jeong, Young-Woo;Kim, Hwa-Jung;Ahn, Yong-Sik;Choi, Hee-Lack
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.423-427
    • /
    • 2018
  • For diamond/metal composites it is better to use diamond particles coated with metal carbide because of improved wettability between the diamond particles and the matrix. In this study, the coating of diamond particles with a chromium carbide layer is investigated. On heating diamond and chromium powders at $800{\sim}900^{\circ}C$ in molten salts of LiCl, KCl, $CaCl_2$, the diamond particles are coated with $Cr_7C_3$. The surfaces of the diamond powders are analyzed using X-ray diffraction and scanning electron microscopy. The average thickness of the $Cr_7C_3$ coating layers is calculated from the result of the particle size analysis. By using the molten salt method, the $Cr_7C_3$ coating layer is uniformly formed on the diamond particles at a relatively low temperature at which the graphitization of the diamond particles is avoided. Treatment temperatures are lower than those in the previously proposed methods. The coated layer is thickened with an increase in heating temperature up to $900^{\circ}C$. The coating reaction of the diamond particles with chromium carbide is much more rapid in $LiCl-KCl-CaCl_2$ molten salts than with the molten salts of $KCl-CaCl_2$.

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • v.23
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

Comparison of Optimum Drilling Conditions of Aircraft CFRP Composites using CVD Diamond and PCD Drills (CVD 다이아몬드 및 PCD이 드릴을 이용한 항공용 CFRP 복합재료의 홀 가공성 비교)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.23-28
    • /
    • 2011
  • Recently CFRP laminate joints process by bolts and nets are developed rapidly in aircraft industries. However, there are serious drawback during jointing process. Many hole processes are needed for the manufacturing and structural applications using composite materials. Generally, very durable polycrystalline crystalline diamond (PCD) drill has been used for the CFRP hole process. However, due to the expensive price and slow process speed, chemical vapor deposition (CVD) diamond drill has been used increasingly which are relatively-low durability but easily-adjustable process speed via drill shape change and price is much lower. In this study, the comparison of hole process between PCD and CVD diamond coated drills was done. First of all, CFRP hole processbility was evaluated using the equations of hole processing conditions (feed amount per blade, feed speed). The comparison on thermal damage occurring from the CFRP specimen was also studied during drilling process. Empirical equation was made from the temperature photo profile being taken during hole process by infrared thermal camera. In addition, hole processability was compared by checking hole inside condition upon chip exhausting state for two drills. Generally, although the PCD can exhibit better hole processability, hole processing speed of CVD diamond drill exhibited faster than PCD case.

The Fabrication of Nickel-Diamond Composite Coating by Electroplating Method (전기도금방법을 이용한 Ni-Diamond 복합도금층 제조에 대한 연구)

  • Moon, Yun-Sung;Lee, Jae-Ho;Oh, Tae-Sung;Byun, Ji-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • The codeposition behavior of submicron sized diamond with nickel from nickel electrolytes has been investigated. Electroplating of diamond dispersed nickel composites was carried out on a rotating disk electrode (RDE). The effects of current type and current density on the electrodeposited Ni-diamond composite coating were investigated. The effects of surfactants on the composite coating were also investigated. The hardness of coating was measured with varying electroplating conditions using Micro Vickers. As diamond was incorporated into the coating, the hardness of coating as well as the wear resistance was improved. The hardness of the coating was increased as much as 100% and the wear resistance was improved as much as 27%. The hardness of composite coating layer increased slightly at the diamond content of above 20 gpl.

  • PDF

Properties of Mirror-surface Grinding for Metal Matrix Ceramic Composites (금속기지 세라믹 복합소재의 경면연삭 가공 특성)

  • Kwak, Tae-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.90-94
    • /
    • 2012
  • This study has been focused on properties of mirror surface grinding technology by ELID(Electrolytic In-process Dressing) for metal matrix ceramic composites using in high precision mirror for optics. The experimental studies have been carried out to get mirror surface by grinding for composites, Al-SiC, Al-graphite and Mg-SiC. Grinding process is carried out with varying abrasive mesh type, depth of cut and feed rate using diamond wheel. The machining result of the surface roughness and condition of ground surface, have been analyzed by use of surface roughness tester and SEM measurement system. ELID grinding technology could be applied successfully for the mirror-surface manufacturing processes in spite of ductility of metal matrix material. As the results of experiments, surface roughness of Al-SiC(45 wt%) has been the most superior in these experimental work-pieces as 0.021 ${\mu}m$ Ra.

Spectrophotometric evaluation of restorative composite shades and their match with a classical shade guide

  • Rafael Melara;Luciana Mendonca;Fabio Herrmann Coelho-de-Souza;Juliana Nunes Rolla;Luciano de Souza Goncalves
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.60.1-60.8
    • /
    • 2021
  • Objectives: The aim of this study was to verify the match between 5 shades of composites from different manufacturers with a shade guide and among the systems using a portable spectrophotometer. Materials and Methods: Shade measurements were performed on specimens of Z350 XT (3M ESPE), Charisma Diamond (Heraeus Kulzer GmbH), Esthet X-HD (Dentsply Caulk), and Empress Direct (Ivoclar-Vivadent) for shades A1, A2, A3, B1, and C3 using a Vita Easyshade spectrophotometer (Vita Zahnfabrik) against a white background. Corresponding shades of Vitapan Classical (Vita Zahnfabrik) guide were measured likewise and shade variation (ΔE) was calculated based on International Commission on Illumination L*a*b* parameters. The ΔE of the composites in each shade was compared by one-way analysis of variance and Tukey's post hoc test (α = 0.05). Results: All composites presented ΔE > 3.7 compared with the shade guide. Variation in shades A3, B1, and C3 was significantly different for all composites. ΔE of Z350 XT was significantly lower for A1 than for the other shades, whereas ΔE of Z350 XT and Charisma Diamond were significantly lower for A2 than for the other shades. Conclusions: No composite shade matched with the shade guide. Equivalent shades of the restorative composite from different manufacturers may show clinically noticeable ΔE.

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

AN EVALUATION OF MECHANICAL PROPERTIES OF LIGHT-CURED RESTORATIVE COMPOSITES BY INDENTATION AND COMPRESSION TEST (압입과 압축에 의한 광중합형 수복용 복합레진의 기계적 성질 평가)

  • Lee, Yong-Woo;Yu, Mi-Kyung;Cho, Young-Gon;Bae, Tae-Sung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.511-518
    • /
    • 1999
  • This study was performed to evaluate the mechanical properties of light-cured restorative composites by compression and indentation tests. Five commercially available light-activated composites (Heliomolar : HM, Aelitefil : AF, Amelogen : AG, Clearfil AP-X : CF, Z100 ZH) were used Disc specimens of 12mm in diameter and 1 mm in thickness and Cylindrical specimens of 3mm in diameter and 6mm in length were prepared for the indentation and compressive test, respectively. All specimens were immersed in distilled water at $37^{\circ}C$ for 30 days. An indentation test of 68-degree trigonal diamond pyramid was made under 10 g load for 15 seconds and an Knoop indentation test was made under 50 g load for 15 seconds. Hardness numbers, characteristic indentation depths and permanent deformation were measured during indentation of the 68-degree trigonal diamond pyramid compressive test was carried out at a crosshead speed of 0.5mm/min. The results obtained were summarized as follows, 1. The highest hardness value was obtained in the CF group and the lowest value was obtained in the HM group. Hardness values showed no significant, difference between AG group and HM group but other groups showed the significant differences in each group(p<0.05). 2. Hardness number by Knoop pyramid were higher than those of 68-degree trigonal diamond pyramid. 3. Plastic deformation during the indentation of 68-degree trigonal diamond pyramid was the lowest in the CF group and the largest in the HM group. Results of Tukey test showed the significant difference between CF group and others; also between ZH and AF groups and AG and HM groups(p<0.05) 4. The highest compressive strength was obtained in the CF group and the lowest compressive strength was obtained in the ZH group. Compressive strength values showed no significant difference between CF group and ZH group but other groups showed the significant differences in each group(p<0.05).

  • PDF

Green and Hard Machining Characteristics of Zirconia-alumina Composites for Dental Implant (치과 임플란트용 지르코니아-알루미나 복합체의 생 가공 및 경 가공 특성)

  • Lim, Hyung-Bong;Tang, Dongxu;Lee, Ki-Ju;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.152-159
    • /
    • 2011
  • The green and hard machining characteristics of dental ceramics are of great interest to dental industry. The green bodies of TZP/$Al_2O_3$ composites were prepared by the cold isostatic pressing, and machined on the CNC lathe using PCD (polycrystalline diamond) insert under various machining conditions. With increasing nose radius of PCD insert, surface roughness initially increased due to increased cutting resistance, but decreased by the onset of sliding fracture. The lowest surface roughness was obtained at spindle speed of 1,300 rpm and lowest feed rate. Hard bodies were prepared by pressureless sintering the machined green bodies at several temperatures. The grinding test for sintered hard body was conducted using electroplated diamond bur with different grit sizes. During grinding, grain pull out in the composite was occurred due to thermal expansion mismatch between the alumina and zirconia. The strength of the composite decreased with alumina contents, due to increased surface roughness and high monoclinic phase transformed during grinding process. The final polished samples represented high strength by the elimination of a phase transformation layer.