• Title/Summary/Keyword: Diamond coated carbide

Search Result 24, Processing Time 0.029 seconds

Performance Characteristics of CVD Diamond Cutting Tools

  • Oles, E.J.;Cackowski, V.J.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 1996
  • CVD diamond tools are becoming more widely used in industry as an economic alternative to polycrystalline diamond (PCD) for machining non-ferrous and non-metallic materials. Although CVD diamond-sheet tools have been on the market for several years, diamond-coated carbide inserts have become available only recently, with the successful resolution of long-standing adhesion problems. Diamond coating morphology on the rake surface of the tool affects chip formation favorably, whereas a microscopically rough, faceted morphology on the flank surface of the tool produces a rough workpiece finish. Workpiece finish can be improved by using a coated tool with a larger nose radius. The tool life provided by diamond-coated tools(~30 $\mu\textrm{m}$ thick) can meet or exceed that of PCD tools, depending on the characteristics of the workpiece material. When using diamond-coated carbide tools in milling, a sharp-edged PCD tool should be used in the wiper position of the cutter to minimize workpiece roughness and burr formation.

  • PDF

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

Chromium Carbide Coating on Diamond Particle Using Molten Salts (용융염을 이용한 다이아몬드 표면의 크롬카바이드 코팅)

  • Jeong, Young-Woo;Kim, Hwa-Jung;Ahn, Yong-Sik;Choi, Hee-Lack
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.423-427
    • /
    • 2018
  • For diamond/metal composites it is better to use diamond particles coated with metal carbide because of improved wettability between the diamond particles and the matrix. In this study, the coating of diamond particles with a chromium carbide layer is investigated. On heating diamond and chromium powders at $800{\sim}900^{\circ}C$ in molten salts of LiCl, KCl, $CaCl_2$, the diamond particles are coated with $Cr_7C_3$. The surfaces of the diamond powders are analyzed using X-ray diffraction and scanning electron microscopy. The average thickness of the $Cr_7C_3$ coating layers is calculated from the result of the particle size analysis. By using the molten salt method, the $Cr_7C_3$ coating layer is uniformly formed on the diamond particles at a relatively low temperature at which the graphitization of the diamond particles is avoided. Treatment temperatures are lower than those in the previously proposed methods. The coated layer is thickened with an increase in heating temperature up to $900^{\circ}C$. The coating reaction of the diamond particles with chromium carbide is much more rapid in $LiCl-KCl-CaCl_2$ molten salts than with the molten salts of $KCl-CaCl_2$.

Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling (CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.

Development of a Drill Tool for CFRP Machining and Evaluation of Drilling Processing (탄소섬유 강화 복합재 가공용 드릴 공구 개발 및 홀 가공성 평가)

  • Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2020
  • Carbon fiber-reinforced plastics (CFRPs) are extremely strong and light fiber-reinforced plastics containing carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in the aerospace, automotive, and ship superstructure industries. In CFRP drilling, the tool performance greatly varies depending on the tool shapes, cutting conditions, and diamond coating. This study developed a new type of tungsten carbide drill with multi-blade edges to evaluate the surface quality of CFRP materials according to the coating thickness of diamond-coated drills. Experiments on tool wear, surface roughness, and burr formation were conducted. The bore exit quality of a 12 mμ -coated drill was better than that of a 6 mμ -coated drill. The superior effects of the 12 mμ -coated drill and the good surface quality of CFRP were also demonstrated.

The Influence of Diamond Abrasive Size on the Life of Tungsten Carbide Wet Drawing Dies (다이아몬드 연마재 입도가 초경 습식신선 다이스 수명에 미치는 영향)

  • Lee, S.K.;Kim, M.A.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.518-523
    • /
    • 2006
  • Wet wire drawing of brass coated steel wire, used for tire reinforcement, is realized with Tungsten Carbide(WC) dies sintered with a cobalt(Co) binder. Dies wear represents an important limitation to the production process and cost savings. Several parameters, such as Co content, WC grain size of tungsten carbide, sintering conditions, and so on, affect on the wear of the drawing die. In this study, the effect of the diamond abrasive particle size on the life of the WC centered dies of the wet wire drawing was investigated. Wet wire drawing experiments were carried out on a wet wire drawing machine. From the experiments, the dies life, dies fracture, wire surface roughness, and wire breaks were investigated. From the results, it was found that the wear of the WC dies increased with the increase in the diamond abrasive particle size.

Comparison Study on Side Milling of CFRP with AlCrN-based, Diamond-Like-Carbon(DLC), and Diamond-Coated End Mill (AlCrN, DLC 및 다이아몬드 코팅 엔드밀을 이용한 탄소섬유복합소재의 측면 밀링에 관한 비교 연구)

  • Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • Carbon fiber reinforced plastic (CFRP) is a composite material useful in the aerospace and automotive industries because of its light weight and high strength. In this study, side milling tests were carried out using AlCrN, diamond-like carbon (DLC), and diamond-coated end mills. Additionally, a comparison study according to the cobalt content was conducted. Thus, tool wear and surface quality were examined and the influences of using coating and a certain material type were analyzed. The surface roughness of the machined surface was measured. Microscope observations revealed that the CFRP fiber at the machined surface was not damaged even at a cutting distance of 3,000 mm. Therefore, this study showed that the diamond-coated end mill containing 6% cobalt is appropriate for milling CFRP.

Deposition of Diamond Like Carbon Thin Films by PECVD (PECVD법에 의한 DLC 박막의 증착)

  • 김상호;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.122-128
    • /
    • 2002
  • This study was conducted to synthesize the diamond like carbon films by plasma enhanced chemical vapor deposition (PECVD). The effects of gas composition on growth and mechanical properties of the films were investigated. A little amount of hydrogen or oxygen were added to base gas mixture of methane and argon. Methane dissociation and diamond like carbon nucleation were enhanced by installing negatively bias grid near substrate. The deposited films were indentified as hard diamond like carbon films by micro-Raman spectroscopy. The surface and fractured cross section of the films which were observed by scanning electron microscopy showed that film growth is very slow as about 0.3$\mu\textrm{m}$/hour, and relatively uniform with hydrogen addition. Vickers hardness of tungsten carbide (WC) cutting tool increased from about 1000 to 1600~1800 by deposition of DLC film, that of commercial TiN coated tool was about 1270. In cutting test of aluminum 6061 alloy, DLC coated cutting tool showed 1/3 or lower crater and flank wear than TiN coated or non-coated WC cutting tools.

Solid Particle Erosion of CVD Diamond (CVD 다이아몬드 코팅의 고체입자 Erosion 특성)

  • 김종훈;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.69-73
    • /
    • 1997
  • Microwave Plasma assisted CVD (Chemical Vapor Deposition) and DC Plasma CVD were used to prepare thin and thick diamond film, respectively. Diamond coated silicon nitride and fiee standing diamond thick film were eroded by silicon carbide particles. The velocity of the solid particle was about 220m/sec. Phase transformation and the other crack formation were investigated by using Raman spectroscopy and microscopy.

  • PDF

Mechanical Properties of CVD Diamond

  • Yoshikawa, Masanori;Hirata, Atsushi
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.212-215
    • /
    • 1996
  • This paper focuses the strength and wear resistance of CVD diamond films. The strength of free-standing CVD diamond films synthesized by microwave plasm CVD, DC plasma CVD, RF plasma CVD and arc discharge plasma jet CVD has been measured by three-point bending test. The wear resistance of CVD diamod films has been evaluated by the pin-on-disk type testing. diamond films coated on the base of sintered tungsten carbide pin by hot filament CVD have been rubbed with a sintered diamond disk in muddy water. Volume removed wear of CVD diamond has been compared with stellite, WC alloy and bearing steel.

  • PDF