• 제목/요약/키워드: Diamond Thin Films

검색결과 204건 처리시간 0.027초

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

다결정 다이아몬드 필름의 신경종양세포(SH-SY5Y) 배양 특성 (Characteristic of neuroblastoma cell (SH-SY5Y) culture on the crystalline diamond film)

  • 남효근;오홍기;김대훈;김민혜;박혜빈;지광환;송광섭
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.10-15
    • /
    • 2013
  • In order to fabricate high sensitive and stable biosensors, we require the material with superior biocompatibility and physical-chemical stability. Many kinds of biomaterials have been evaluated to apply for bioindustry. Recently, carbon based diamond thin films have been focal pointed as bio-applications and their possibility has been evaluated. Diamond thin film has many advantages for electrochemical and biological applications, such as wide potential window (3.0-3.5V), low background current and chemical-physical stability. In this work, we have cultured neuroblastoma cell (SH-SY5Y) on the crystalline diamond films. We use MTT assay to evaluate the characteristic of cell culture on the substrates. As a result, neuroblastoma cell was cultured on the crystalline diamond film as similar as cell culture dish.

비대칭 마그네트론 스퍼터링법으로 성장된 a-C:H의 물리적 특성 (Characteristics of Hydrogenated Amorphous Carbon (a-C:H) Thin Films Grown by Close Field UnBalanced Magnetron Sputtering Method)

  • 박용섭;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.278-282
    • /
    • 2004
  • The Hydrogenated amorphous carbon(a-C:H) thin films are deposited on silicon with a close field unbalanced magnetron(CFUBM) sputtering systems. The experimental data are obtained on the depositon rate and physical properties of a-C:H films using DC bias voltage and Ar/C$_2$H$_2$ pressure. The depostion rate and the surface roughness decrease with DC bias voltage, but the hardness of the thin films increases with DC bias voltage. And the position of G-peak moves to lower wavenumber indicating an increase in diamond-like carbon characteristics with the lower Ar/C$_2$H$_2$ pressure.

Laser patterning된 DLC 박막의 Tribology 특성연구 (A Study on Tribology Characteristics of Laser Patterned DLC Thin Films)

  • 이지석;김동준;신동철;김태규
    • 열처리공학회지
    • /
    • 제33권1호
    • /
    • pp.25-32
    • /
    • 2020
  • In this study, the tribology of laser patterned DLC thin film was studied. DLC thin films were coated by RF-PECVD to improve the durability of tungsten carbide (WC) materials. DLC thin films have high hardness and low friction characteristics. Dot and line patterning was processed on the surface of DLC thin film with femtosecond laser, and the coefficient of friction was improved. As a result of ball on disk abrasion test, the hardness and friction coefficient of DLC thin films were much better than that of WC material. The friction coefficient of DLC thin film with dot patterning and line patterning showed better results. The excellent performance of the laser patterned DLC coating is appeared to reduce the coefficient of friction due to the reduction of surface contact area.

라만 맵핑 방식을 사용한 다이아몬드상 카본박막의 미세구조변화에 관한 연구 (A Study on Detailed Structural Variation of Diamond-like Carbon Thin Film by a Novel Raman Mapping Method)

  • 최원석
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.618-623
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. The wear track on the DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of the DLC films was performed for 1 to 3 hours with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The surface roughness and cross-sectional images of the wear track were obtained using an atomic force microscope (AFM). The novel Raman mapping method effectively shows the graphitization of DLC films of $300{\mu}m\times300{\mu}m$ area according to the sliding time by G-peak positions (intensities) and $I_D/I_G$ ratios.

나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구 (Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD)

  • 박종성;송오성
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.538-543
    • /
    • 2008
  • 나노급 다이아몬드는 최근 폭발법이나 증착법에 의한 신공정으로 100 nm 이하의 분말형태의 제조가 가능하다. 나노급 다이아몬드의 소결을 이용하면 이상적인 연마기기의 제작이 가능하다. 이러한 나노급 다이아몬드의 소결 공정에서 생기는 비이상적인 나노결정의 결정립성장과 다이아몬드 결합장애를 방지하기 위해서 나노급 무기물을 균일하게 코팅하는 공정개발이 필요하다. 본 연구에서는 나노급 다이아몬드의 소결 특성을 향상시키기 위해서 ALD(atomic layer deposition)을 이용하여 진공에서 $20{\sim}30\;nm$ 두께의 ZnO 박막을 코팅해 보았다. 나노급 다이아몬드 분말 전면에 경제적으로 ZnO ALD를 위해서 기존의 기계적 진동효과 또는 전용 fluidized bed reactor를 대치하여 새로이 20 mm 석영튜브 안에 다이아몬드 분말을 넣고 다공성 유리필터로 막은 후 펄스와 퍼지 공정시의 압력에 의한 다이아몬드의 부유를 이용한 변형된 fluidized bed 공정을 채용하였다. 다공성 유리필터로 양쪽이 막힌 석영튜브 안에 전구체 DEZn (diethylzinc : $C_4H_{10}Zn$)와 반응기체 $H_2O$를 사용하여 ZnO 박막을 캐니스터 온도 $10^{\circ}C$에서 원자층증착하였다. 공정 순서 및 반응물질 주입 시간은 DEZn pulse-0.1초, DEZn purge-20초, $H_2O$ pulse-0.1초, $H_2O$ purge-40초와 같이 설정하였으며, 이 네 단계를 1 cycle로 정의하여 100 cycle 반복 실시하였다. 다이아몬드 분말과 ZnO 박막이 증착된 다이아몬드 분말의 미세구조를 확인하기 위하여 투과전자현미경 (transmission electron microscope)을 이용하였다. TEM 측정결과, ALD 증착 전 나노급 다이아몬드 분말의 직경이 약 $70{\sim}120\;nm$이었고 사면체, 육면체 등의 다양한 형태를 보임을 확인하였다. ZnO 박막이 ALD코팅된 다이아몬드 분말의 직경은 약 $90{\sim}150\;nm$이었고, 다이아몬드 분말과 ZnO의 명암차이에 의해 약 $20{\sim}30\;nm$ 두께의 균일한 ZnO 박막이 다각형 형태의 다이아몬드 파우더 표면에 성공적으로 증착되었음을 확인하였다.

마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과 (Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD)

  • 김인섭;강찬형
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.29-35
    • /
    • 2013
  • The effect of DC bias on the growth of nanocrystalline diamond films on silicon substrate by microwave plasma chemical vapor deposition has been studied varying the substrate temperature (400, 500, 600, and $700^{\circ}C$), deposition time (0.5, 1, and 2h), and bias voltage (-50, -100, -150, and -200 V) at the microwave power of 1.2 kW, working pressure of 110 torr, and gas ratio of Ar/1%$CH_4$. In the case of low negative bias voltages (-50 and -100 V), the diamond particles were observed to grow to thin film slower than the case without bias. Applying the moderate DC bias is believed to induce the bombardment of energetic carbon and argon ions on the substrate to result in etching the surfaces of growing diamond particles or film. In the case of higher negative voltages (-150 and -200 V), the growth rate of diamond film increased with the increasing DC bias. Applying the higher DC bias increased the number of nucleation sites, and, subsequently, enhanced the film growth rate. Under the -150 V bias, the height (h) of diamond films exhibited an $h=k{\sqrt{t}}$ relationship with deposition time (t), where the growth rate constant (k) showed an Arrhenius relationship with the activation energy of 7.19 kcal/mol. The rate determining step is believed to be the surface diffusion of activated carbon species, but the more subtle theoretical treatment is required for the more precise interpretation.

PECVD에 의한 DLC 박막의 성장과 그 특성 조사 (The Growth of Diamond-Like-Carbon (DLC) Film by PECVD and the Characterization)

  • 조재원;김태환;김대욱;최성수
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.248-254
    • /
    • 1998
  • PECVD(Plasma Enhanced Chemical Vapor Deposition) 방법을 이용하여 비정질 고 상 탄소 박막의 하나인 유사 다이아몬드(Diamond-Like-Carbon; DLC) 박막을 증착하였다. FT-IR Spectroscopy와 Raman Scattering 등을 통해 박막의 구조적 특징을 조사하였는데, 박막은 microcrystalline diamond domain과 graphitelike carbon domain들이 수소화된 $sp^3$사 면체 구조의 비정질 탄소에 의해 그물 구조로 연결되어진 것으로 보인다. 이러한 추정은 I-V 특성 조사의 결과와도 좋은 일치를 보이는데, 특히 I-V조사에서는 전류의 갑작스러운 증가가 관측되어졌으며 이것은 graphitelike carbon domin들간의 전자 tunneling 현상으로 이해되어진다. 그리고 대단히 얇은 탄소 박막에 대한 Raman산란 조사에서는 증착 초기 상 태에 $\beta$-SiC층이 형성되어지는 것을 확인할 수 있었다.

  • PDF

Nano-Mechanical and Tribological Characteristics of Ultra-Thin Amorphous Carbon Film Investigated by AFM

  • Chung, Koo-Hyun;Lee, Jae-Won;Kim, Dae-Eun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1772-1781
    • /
    • 2004
  • The mechanical as well as tribological characteristics of coating films as thin as a few nm become more crucial as applications in micro-systems grow. Especially, the amorphous carbon film has a potential to be used as a protective layer for micro-systems. In this work, quantitative evaluation of nano-indentation, scratching, and wear tests were performed on the 7nm thick amorphous carbon film using an Atomic Force Microscope (AFM). It was shown that AFM-based nano-indentation using a diamond coated tip can be feasibly utilized for mechanical characterization of ultra-thin films. Also, it was found that the critical load where the failure of the carbon film occurred was about 18${\mu}$N by the ramp load scratch test. Finally, the wear experimental results showed that the quantitative wear rate of the carbon film ranged 10$\^$-9/~10$\^$-8/ ㎣ /N cycle. These experimental methods can be effectively utilized for a better understanding the mechanical and tribological characteristics at the nano-scale.

Diamond-like Carbon (DLC) 박막의 구조적, 전기적 물성분석 (Characterization of structural and electrical properties of diamond-like carbon thin films)

  • 이재엽;이진복;손민규;김성영;김응상;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1383-1386
    • /
    • 1997
  • Dimond-like carbon(DLC) films have been deposited by using both rf plasma-enhanced chemical vapor deposition (PECVD) and filtered cathodic vacuum arc (FCVA) deposition systems. Effects of deposition conditions, such as dc self-bias, $CH_4$ gas pressure, substrate bias, and $N_2$ partial pressure, on the structural and electrical properties of DLC films are examined. The experimental results obtained have also been discussed by considering a theoretical model for film growth.

  • PDF