• Title/Summary/Keyword: Diamond Deposition

Search Result 380, Processing Time 0.033 seconds

Deposition of Diamond Like Carbon Thin Films by PECVD (PECVD법에 의한 DLC 박막의 증착)

  • 김상호;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.122-128
    • /
    • 2002
  • This study was conducted to synthesize the diamond like carbon films by plasma enhanced chemical vapor deposition (PECVD). The effects of gas composition on growth and mechanical properties of the films were investigated. A little amount of hydrogen or oxygen were added to base gas mixture of methane and argon. Methane dissociation and diamond like carbon nucleation were enhanced by installing negatively bias grid near substrate. The deposited films were indentified as hard diamond like carbon films by micro-Raman spectroscopy. The surface and fractured cross section of the films which were observed by scanning electron microscopy showed that film growth is very slow as about 0.3$\mu\textrm{m}$/hour, and relatively uniform with hydrogen addition. Vickers hardness of tungsten carbide (WC) cutting tool increased from about 1000 to 1600~1800 by deposition of DLC film, that of commercial TiN coated tool was about 1270. In cutting test of aluminum 6061 alloy, DLC coated cutting tool showed 1/3 or lower crater and flank wear than TiN coated or non-coated WC cutting tools.

Electrical Properties of Diamond-like Carbon Thin Film synthesized by PECVD (PECVD로 합성한 다이아몬드상 카본박막의 전기적 특성)

  • Choi, Won-Seok;Park, Mun-Gi;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.973-976
    • /
    • 2008
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas. We examined the effects of the RF power on the electrical properties of the DLC films. The films were deposited at several RF powers ranging from 50 to 175 W in steps of 25 W. The leakage current of DLC films increased at higher deposition RF power. And the resistivities of DLC films grown at 50 W and 175 W were $5\times10^{11}$ ${\Omega}cm$ and $2.68\times10^{10}$ ${\Omega}cm$, respectively.

Role of Charge Produced by the Gas Activation in the CVD Diamond Process

  • Hwang, Nong-Moon;Park, Hwang-Kyoon;Suk Joong L. Kang
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 1997
  • Charged carbon clusters which are formed by the gas activation are suggested to be responsible for the formation of the metastable diamond film. The number of carbon atoms in the cluster that can reverse the stability between diamond and graphite by the capillary effect increases sensitively with increasing the surface energy ratio of graphite to diamond. The gas activation process produces charges such as electrons and ions, which are energetically the strong heterogeneous nucleation sites for the supersaturated carbon vapor, leading to the formation of the charged clusters. Once the carbon clusters are charged, the surface energy of diamond can be reduced by the electrical double layer while that of graphite cannot because diamond is dielectric and graphite is conducting. The unusual phenomena observed in the chemical vapor deposition diamond process can be successfully approached by the charged cluster model. These phenomena include the diamond deposition with the simultaneous graphite etching, which is known as the thermodynamic paradox and the preferential formation of diamond on the convex edge, which is against the well-established concept of the heterogeneous nucleation.

  • PDF

Improvement of Coating Properties of Metal/diamond Composite Through Ni Coated Diamond in the Kinetic Spraying Process (저온 분사 공정에서 니켈이 코팅된 다이아몬드 적용을 통한 금속/다이아몬드 복합재료의 코팅성 향상)

  • Na, Hyun-Taek;Bae, Gyu-Yeol;Kang, Ki-Cheol;Kim, Hyung-Jun;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.255-263
    • /
    • 2008
  • Generally, deposition mechanism of diamond particle is mainly embedding effect in the kinetic spray process. Accordingly, in spite of high cost, helium gas was employed as process gas to get high diamond fraction in the composite coating. In this study, the deposition behavior of bronze/diamond by kinetic spray process was compared using different process gas (helium and nitrogen). Bare (mean size of $5{\mu}m$, $20{\mu}m$) and nickel coated diamond (mean size of $26{\mu}m$) were deposited on Al 6061-T6 substrate with fixed process temperature and pressure. For comparison with experimental results, plastic deformation behavior of nickel layer was simulated by finite element analysis (using ABAQUS/Explicit 6.7-2). The size, broken ratio, and fraction of diamond in the composite coating were analyzed through scanning electron microscopy and image analysis method. The uniform distribution and deposition efficiency of diamond particles in the coating layer could be achieved by tailoring the physical properties of the feedstock.

Synthesis of (110) Oriented Diamond Films by Microwave Plasma Enhanced Chemical Vapor Deposition (마이크로파 플라즈마 화학기상성장법에 의해 (110)면으로 배향된 다이아몬드막의 합성)

  • 박재철;박상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.269-272
    • /
    • 1995
  • As methane concentration was varietal, the textures of diamond films deposited on Si(100)substrate could be observed by XRD, SEM and Raman spectroscope. As a result, O$_2$plasma etching has been useful to observe microscopic structure of diamond films by SEM. The cross section of diamond films deposited on Si(100) substrate with 4% concentration of methane to hydrogen was a polycrystal like a pillar. The diamond crystal like a pillar has been oriented to (110) surface and the high quality diamond with FWHM of Raman spectra being 3.8cm$\^$-1/ has been grown. As time goes by deposition time, the preferred orientation increases.

  • PDF

Synthesis of (110) oriented diamond films by microwave plasma enhanced chemical vapor deposition (마이크로파 플라즈마 화학기상성장법에 의해 (110)면으로 배향된 다이아몬드막의 합성)

  • 박재철;박상현
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.270-276
    • /
    • 1996
  • As methane concentration was varied, the textures of diamond films deposited on Si(100)substrate were observed by XRD,SEM and Raman spectroscope. As a result, $O_{2}$ plasma etching has been useful to observe microscopic structure of diamond films by SEM. The cross section of diamond films deposited on Si(100)substrate with 4% concentration of methane to hydrogen was a polycrystal like a pillar. The diamond crystal like a pillar has been oriented to (110)surface and the high quality diamond film with FWHM of Raman spectra being 3.8 $cm^{-1}$ / has been grown. As time goes by deposition time, the preferred orientation increases

  • PDF

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature (HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화)

  • Gwon, J.U.;Kim, M.S.;Jang, T.H.;Bae, M.K.;Kim, S.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Cyclic on/off Modulation of $CH_4\;and/or\;O_2$ Flows for the Enhancement of the Diamond Film Characteristics ($CH_4/O_2$의 사이클릭 유량제어에 의한 다이아몬드 박막의 특성향상)

  • Kim Tae-Gyu;Kim Sung-Hoon;Yoon Su-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.2
    • /
    • pp.82-86
    • /
    • 2006
  • Diamond films were deposited on 10.0$\times$10.0$mm^2$ pretreated (100) Si substrate using $CH_4$, $H_2$ and $O_2$ source gases in a horizontal-type microwave plasma enhanced chemical vapor deposition system. We introduced a cyclic on/off modulation of $CH_4$ and/or $O_2$ flows is a function of the reaction time during the initial deposition stage. Surface morphology and diamond quality of the films were investigated as a function of the different cyclic modulation process of the source gases flows: For the enhancement of the nucleation density, there is an optimal process for the incorporation of oxygen. Diamond qualities of the films were improved by introducing oxygen gas during the initial deposition stage.

Characteristics of a Polycrystalline Diamond Thin Film Deposited on a-plane Sapphire Substrate (a-plane 사파이어기판에 증착된 Polycrystalline Diamond 박막의 특성)

  • Tan, Xing Yan;Jang, Tae Hwan;Kwon, Jin Uk;Kim, Tae Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this study, polycrystalline diamond was synthesized by chemical vapor deposition (CVD). Diamond films were deposited on a-plane sapphire substrates while changing the concentration of methane for hydrogen (CH4/H2), and the concentrations of methane were 0.25, 0.5, 1, 2, 3 and 4 vol%, respectively. Crystallinity and nucleation density according to changes in methane concentration were investigated. At this time, the discharge power, vacuum pressure, and deposition time were kept constant. In order to deposit polycrystalline diamond, the sapphire substrate was etched with sulfuric acid and hydrogen peroxide (ratio 3:7), and the sapphire surface was polished for 30 minutes with 100 nm-sized nanodiamond particles. The deposited diamond thin film was analyzed by a scanning electron microscope (SEM), a Raman spectra, Atomic force microscope (AFM) and an X-ray diffractometer (XRD). By controlling the ratio of methane to hydrogen and performing appropriate pre-treatment conditions, a polycrystalline diamond thin film having excellent crystallinity and nucleation density was obtained.

Adhesion Characteristics of Diamond Thin Film on WC-Co Substrate (초경합금상에 합성된 다이아몬드 박막의 부착력 특성)

  • 이상희;박상현;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.584-589
    • /
    • 2001
  • Diamond thin films were synthesized on WC-Co substrate by RF PACVD(radio frequency plasma-assisted chemical vapor deposition) technique with H$_2$-CH$_4$-O$_2$ gas mixture. WC-Co substrate was pre-treated in HNO$_3$solution, scratched with 3$\mu\textrm{m}$ diamond paste and exposed in the O$_2$ plasma before deposition. The diamond thin film prepared at 11% oxygen concentration showed the best quality of good adhesion and wear resistance at various oxygen concentration with the fixed 5% CH$_4$ concentration.

  • PDF