For maintenance of exposed implant in healthy state, it is necessary to treat the surface of implant fixture and provide the surface adjustable to surrounding tissues. Variable techniques have been introduced such as citric acid and air-abrasive system to treat the failed implant. Although when the rough surface of HA coated implant was exposed to oral environment, the surface treatment method with citric acid or air-abrasive system is effective for removal of bacterial endotoxin, it is unsuccessful to prevent plaque deposition due to difficulty in removal of rough surface of HA coated implant. Thus, in this study the method that removes bacterial endotoxin and makes smooch surface without alteration of surface characteristics was studied. HA coated disc manufactured by IMZ Co. Was treated with high speed diamond bur, low speed diamond bur, stone bur, rubber point, jetpolisher. And then its surface state was examined with profilometer and SEM to evaluate the surface smoothness, and its surface component was analyzed with EDX to evaluate wheter the surface characteristics were altered or not. As a result, following results were obtained. When the surface roughness of each implant disc was measured by profilometer, the group I showed a $R_{max}\;2.11{\mu}m$ and the group II, III, IV, V showed a $R_{max2}\;4.17{\mu}m$, $7.28{\mu}m$, $8.61{\mu}m$ and $39.44{\mu}m$ respectively. That is, surface smoothness was highest in the group I and it has been gradually decreased in the group II, III, IV and V. Under the SEM examination, the group I showed relatively smooth surface and the group II showed slightly rougher surface than the group I due to partially remaining HA particles while most HA particle was removed. The group III and IV showed rough topography due to HA particles that was not grinded, and HA coated surface in group V showed very irregular surface with deep groove and prominence. In cross-sectional view, the group I showed uniform surface, and the group III, IV showed rough surface due to remaining HA particles but the thickness of HA coating was remarkably reduced. The group II has similar pattern in group I, and the group V showed about $40{\mu}m$ thickness although it was not constant. By analysis of surface component with EDX, the group II in which the grinding was effective showed a small quantity of calcium and phosphorous and the group III, IV, in which the grinding was incomplete showed calcium and phosphorus peak. In all experimental group, no other than titanium, aluminum, calcium, phosphorus was observed.