• Title/Summary/Keyword: Diamond Abrasive

Search Result 89, Processing Time 0.024 seconds

Formation of Diamond/Mo/Ni Multi-Layer on Steel Substrate (강 표면의 다이아몬드/몰리브데늄/니켈 복합층의 생성)

  • Lee, H.J.;J.I. Choe;Park, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.37-37
    • /
    • 2002
  • Diamoncl/Mo/Ni multi-layers on SKH-51 steel substrate was prepared to improve the abrasive wear resistance of a tool and die by a commercial chemical vapor deposition unit and electro-plating. The diamond after 7 hour deposition had cuba-octahedral structure with 2~5$\mu\textrm{m}$ grains. The existence of non-ferrous metals such as chromium, nickel and molybdenum between diamond and SKH-51 substrate results in forming higher quality of diamond layer by retarding carbon diffusion in the diamond layer during deposition, and also improving hardness and wear resistance. Surface cracks on the film was sometimes observed by the difference of by the thermal expansion coefficients between the steel substrate and the deposited layers during cooling.

  • PDF

A study on grinding characteristics of CBN single abrasive grain (CBN 단입자의 연삭특성에 관한 연구)

  • 팽현진;손명환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1533-1541
    • /
    • 1990
  • Cubic boron nitride (CBN) is known the second hardest material followed diamond and was provided industry as an abrasive grain in the late 1960's. Since the introduction of CBN, a large amount of research has been carried out to determine the best application condition for grinding operation. Despite the advantages in its characteristics, CBN has not yet gained full acceptance as more excellent abrasive grain than traditional one. The reason for this state is that the surface roughness ground by CBN is worse than by traditional one and dressing and truing is very difficult. This led user's resistance to the use of CBN as an abrasive grain. Present study is to investigate the cause of lower surface roughness ground by CBN single crystal abrasive grain comparing with traditional one.

Assessment of Subsurface Damage in Ultraprecision Machined Semiconductors

  • Lucca, D.A.;Maggiore, C.J.;Rhorer, R.L.;Wang, Y.M.;Seo, Y.W.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.156-161
    • /
    • 1995
  • The subsurface damaged layer in ultraprecisison machined single crystal Ge was examined by ion channeling. Single crystal Ge surfaces were prepared by chemo-mechanical polishing, mechanical polishing with 1/4 gm diamond abrasive, single point diamond turning and ultraprecision orthogonal flycutting. The extent of subsurface lattice disorder was compared to the crystal's orginal surface quality. Ion channeling is seen to be useful for quantitative measure of lattice disorder in finely finished surfaces.

The Conditioning Behaviors of Diamond CVD Deposited Seramic CMP Conditioner (다이아몬드 CVD 증착에 의한 세라믹 CMP Conditioner의 Conditioning 거동)

  • Kang, Young-Jae;Eom, Dae-Hong;Park, Jum-Yong;Park, Jin-Gu;Ko, Soong;Myung, Beom-Young;Lee, Sang-Ik;Kwon, Pan-Gi
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.270-273
    • /
    • 2002
  • Conditioning은 CMP(Chemical Mechanical Planarization)에 필수적인 공정중의 하나이다. Conditioning의 목적은 removal rate와 uniformity를 CMP 공정 중에서 일정하게 유지시키는데 목적이 있다. 예전의 conditioning disks는 stainless steel substrate 위에 diamond 입자를 올리고 Ni전기도금을 결합시켜서 사용하였다. 그러나, CMP 공정 중에 Ni의분해로 인한 금속의 오염과 diamond abrasive의 분리로 인하여 scratch 문제가 발생하였다. 이 문제를 해결하기 위해서 ceramic substrate와 그것을 정밀 가공하는 기술을 응용함으로써 본래의 conditioning disks가 가지고 있는 diamond 입자의 분리와 metals 분해의 문제를 해결할 수 있게 되었다.

  • PDF

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Heat-treatment of Diffusional Behaviors of Plasma Spray Coated Layer for Fabrication of Abrasive Plates for Diamond (다이아몬드 가공을 위한 연마판의 제조 및 플라즈마 용사 코팅층의 열처리 거동)

  • Choi, Kwangsu;Yang, Seunga;Lee, Jong wan;Kim, Minkyu;Lee, Seong jun;Park, Joon Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2017
  • In this study, while the abrasive plates for diamond have been prepared through mechanical alloying and sintering of elemental powders, a fabrication route of plasma thermal coatings has been adopted for the first time. When diamond knife is sharped or polished, a metal plate has been applied, which is made of mechanical alloying and sintering. In this study, in order to develop a cost - effective manufacturing process, plasma coatings of FeCrNi and Ti on cast iron plate were applied together with Al intermediate layer coatings. The plasma coatings were successfully performed, and the optimum coating layer conditions were discussed in terms of micro-structural observations at the interfaces.

Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness (강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향)

  • Lee, JunHyuk;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.

Experiments on the Grinding Conditions for Helical Scan Grinding of a Glass Material (유리 재료의 헬리컬 스캔 연삭 조건 실험)

  • Lee, Dae-Uk;O, Chang-Jin;Lee, Eung-Seok;Kim, Ok-Hyeon;Kim, Seong-Cheong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.165-170
    • /
    • 2001
  • In normal grinding abrasive particles of a grinding wheel rotate on planes parallel to the direction of workpiece fred. which may induce continued scratch lines on ground surface as the workpiece feeds. Instead in helical scan grinding the planes make an angle, called a helical angle, with the feeding direction. Thus scratch lines produced by abrasive particles per one revolution are discontinued which implies that the generation of scratch lines are suppressed by the helical scan grinding. In this study some experimental works have been done on the helical scan grinding of glass to find the effects of grinding conditions on the surface roughness and estimate the optimal grinding conditions. The helical angle, fred rate, material removal rate and the wheel speed are taken as factors for three kinds of grinding wheels i.e., coarse(#140 mesh), medium(#400) and fine(#800) diamond wheels. The experiments are scheduled by Taguchi technique and ANOVA has been carried out for the interpretation of the results. As a result of this study effects of the factors are verified quantitatively showing that the major factors are changed according to the wheel's mesh size and the helical angle is one of the influencing factors on the surface quality.

  • PDF

Model for predicting tool life of diamond abrasive micro-drills during micro-drilling of ceramic green bodies (세라믹 성형체의 미소구멍 가공 시 다이아몬드 입자 전착 드릴의 공구 수명 예측 모델)

  • 이학구;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.593-598
    • /
    • 2003
  • Ceramic plates containing many micro-holes are used in diverse applications such as MCP (Microchannel Plate). catalytic converters, filters, electrical insulators in integrated circuits, and so on. One of the efficient methods for machining many holes in ceramic plates is wet drilling of ceramic green bodies followed by sintering them. Since the strength of ceramic green bodies is much lower than the strength of sintered ceramic plate, ceramic green bodies can be drilled with high feed rate. The axial force during micro-drilling of ceramic green bodies increases rapidly at high feed rate, which induces the crack in workpiece. Therefore, the tool lift of micro-drill with respect to feed rate may be determined by the predicting increase of axial force. In this work, the axial force during micro-drilling was calculated using the chip flow model on the micro-drill tip. from which the tool life of diamond abrasive micro-drill during micro-drilling of ceramic green bodies was calculated.

  • PDF

Surface grinding of WC-Co with high quality (WC-Co의 고품위 평면 연삭가공)

  • Heo, S.J.;Kang, J.H.;Kim, W.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF