• Title/Summary/Keyword: Diameter Measurement

Search Result 1,210, Processing Time 0.029 seconds

A Study on the Universal Outer Diameter Measurement Module using LVDT (LVDT를 이용한 범용 외경측정 모듈에 관한 연구)

  • Lee, Neung-Gu;Kwac, Lee-Ku;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.100-106
    • /
    • 2017
  • A universal outer diameter measurement module was developed using a linear variable differential transformer (LVDT). This outer diameter measurement module enables simultaneous measurement of outer diameter, displacement, and perpendicularity of bench-type high-precision products by combining analogue and digital measurement principles with mechanically precise and fine adjustment functions. The developed module showed a performance of 0.001mm in measurement resolution, 0.001mm in measurement accuracy, reference surface abrasion lower than Ra 0.1864, and measurement stability of 0.002mm. Therefore, we have acquired domestic measurement technology to improve productivity by securing technical competitiveness for universal diameter measurement technology, lower production costs through import substitution, and increased quality of products with more precise measurement technology. Furthermore, a substitution effect is expected for expensive import measurement system equipment used in production, research, and inspection sites in industries that produce precision processing products such as automobile and machine components.

On-Machine Measurement System Development of Hole Accuracy using Machine Vision (머신비젼을 이용한 구멍 정밀도의 기상측정시스템 개발)

  • Kim, Min-Ho;Kim, Tae-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.7-13
    • /
    • 2010
  • The integrity and accuracy of the drilling hole are decided by positional error, diameter error, the roundness, the straightness, the cylindericity, size of the burr, the surface roundness and others. Among these parameters, positional error and diameter error have the most important parameters. The diameter error has been widely studied, but there has been little research done about the positional error due to the difficulty of measuring it. The measurement of hole location and diameter would be performed by CMM(Coordinate Measurement Machine). However, the usage of CMM requires much time and cost. In order to overcome the difficulties, we have developed a hole location and diameter error measuring device using machine vision. The developed measurement device attached to a CNC machine can determine hole quality quickly and easily.

Geometric Error Analysis of Contact Type Three Points Supporting Method for Inner Diameter Measurement (접촉식 3점지지법에 의한 내경측정의 기하학적 오차 해석)

  • Kim, Min-Ho;Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.69-76
    • /
    • 2008
  • Inner diameter of bearing race is automatically measured by complete inspection system after grinding process. Contact type three points supporting method is widely applied to automatic inner diameter measurement because of its excellent stability. However, the geometric consideration regarding three points supporting method is not sufficient. In this study, the error equation from geometric error analysis of three points supporting method is found. The effect of factors in the error equation is also investigated. The error equation is linear for difference of diameter in sample and master on range of tolerance. An error becomes more and more larger, when the distance of two supporting balls or the diameter of supporting ball are increased. In the result, some considerations are proposed for measurement of inner diameter by the three points supporting method.

A Comparison of Accuracy Between a Turbine and an Orifice Meter in the Field (현장여건에 따른 터빈 유량계와 오리피스 유량계의 정확도 비교)

  • An, Seung-Hee;Her, Jae-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.97-105
    • /
    • 1999
  • Orifice flow meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice flow meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested in the standard manuals, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the more the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

A Study on the Reasonable Measurement Point of Root Collar Diameter of Landscape Trees in Korea (한국 조경수목 근원직경 측정의 합리적 위치 설정에 대한 연구)

  • Han, Yong-Hee;Kim, Hwa-Jeong;Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.59-70
    • /
    • 2021
  • This study was to investigate the measurement point of root collar diameter of landscape trees in Korea. It may contribute to avoiding disputes caused by the difference in measurement criteria of root collar diameter of landscape trees between tree growers and constructors. The difference between landscape trees' root collar diameter measurement point was 3.59cm from 6cm underground to the surface and 1.35cm from 0cm to 6cm above ground. The source root collar diameter measurement point difference was larger in the basement than in the ground. The standard deviation of the root collar diameter of the landscape tree was 0.64 from 6cm underground to the surface, and the difference in standard deviation from 0cm to 6cm above ground was 0.16. The difference by measurement point of the root collar diameter was larger in the basement than in the ground. It has been proposed to set the reasonable measurement point of the landscaping tree root collar diameter at the inflection point where the standard deviation of the tree trunk diameter is the smallest in line with the size change of the standard for each root collar diameter measurement point. By tree species, Cornus officinalis Siebold & Zucc. 18cm above the ground, Chionanthus retusus Lindl. & Paxton. 12cm above the ground, Zelkova serrata (Thunb.) Makino. 12cm above the ground, Celtis sinensis Pers. 12cm above the ground, Styrax japonicus Siebold & Zucc. 10 cm above the ground, Cornus officinalis Siebold & Zucc. 10cm above the ground, Acer palmatum Thunb. ex Murray. 6cm above the ground, Ilex rotunda Thunb. 6cm above the ground, Quercus myrsmaefolia Blume. 4cm above the ground, Lagerstroemia indica L. 2cm above the ground The above heights were shown as reasonable measurement points. The difference by landscape tree root collar diameter measurement site showed that the standard deviation was small throughout the tree species, and the reasonable average measurement point with a stable slope of the deviation was 12cm or more on average. It can be said that the reasonable measurement point of the root collar diameter of a landscape tree is set at an average of 12cm above the ground. However, recognizing 30cm, which is a familiar ruler(尺) in traditional practices, is quick, It was recommended to measure at the height of 30cm from the surface for a reasonable measurement point of the root collar diameter of a landscape tree, for the uniformity of measurement standards.

A Study on the out-diameter measuring machine by the LVDT sensors (LVDT 센서를 이용한 외경 측정 방안에 대한 연구)

  • Hwang J.H.;Roh J.H.;Park Ki-Hong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.291-292
    • /
    • 2006
  • Currently A demand of high precision workpiece is increasing in industry. At present, roundness measuring machine using Air bearing, coordinate measuring machine that are used from measurement station. but these machines will not be able to apply to In-line process. because of like these machine's price are very expensive and measurement time is long. also, the complexity of conventional roundness measurement method based on fourier transform, it makes difficult to development analysis program. This work present new architecture of a Out-diameter measuring system fur analysis of roundness of product. In this system, the influence of table motion errors is minimize by using two LVDT sensor and knife edge contact tip. We are produce a test machine and make an experimenter on Out-diameter of test bearing. The measurement result compared with roundness measuring machine.

  • PDF

Process Quality Improvement through Improving Measurement System for Internal Diameter of Gun Barrel (포신 내경 측정시스템 개선을 통한 공정품질 향상)

  • Park, Young Min;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.633-642
    • /
    • 2023
  • Purpose: The variation of the internal diameters of gun barrel incurs a lot of reworks in gun barrel manufacturing process and the significant quality problem of gun barrel. And it is likely to stem from the current measurement system for the internal diameter of gun barrel and the related manufacturing process as well. The purpose of this study is to improve the gun barrel manufacturing process through improving measurement system. Methods: The improved measurement system using laser can measure the internal diameters of gun barrel more accurately, and the properly adjusted honing process reduces the variation of internal diameters of gun barrel. Results: Comparing the mean square error of internal diameters for 6 gun barrels measured before and after process improvement shows that the variation of gun barrel internal diameters was significantly reduced after the process improvement. Conclusion: The introduction of improved measurement system for the internal diameters of gun barrel and the adjustment of related honing process results in the reduction of reworks of gun barrels and their internal diameter variations.

An Experimental Study on Selecting the Diameter of Probe Stylus of a Coordinate Measuring Machine in Measuring the Edge Profile of High Pressure Compressor (압축기 블레이드의 Edge 형상 측정시 3차원 측정기의 탐침 볼 직경 선정을 위한 실험적 연구)

  • Joung, Soo-Ho;Byun, Jai-Hyun
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.432-438
    • /
    • 2002
  • When the trailing edge and leading edge of an airfoil contour of high pressure compressor blades are measured, there exists a measurement error due to the size of the probe stylus ball diameter. In the paper an experimental study is provided to determine the optimum diameter of the probe stylus in inspecting the airfoil of the high pressure compressor blade. The measurement and analysis procedure suggested in this paper will be helpful to those who are involved in measuring and inspecting various types of blades.

Construction of Precision Measurement Interferometer for Standard Ball Diameter (표준구직경 정밀측정 간섭계 제작)

  • Chang, Kyung-Ho;Lee, Yong-Jae;Suh, Ho-Suhng;Do, Jin-Yeol;Kang, Si-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 1999
  • We constructed an interferometer for precise measurement of the ball diameter, and measured the diameter of steel ball with a diameter of 78 mm. The interferometer was consisted of etalon to instal ball between two parallel plates and placed on the monolithic flexure to be moved parallel. The ball diameter was calculated from phase difference of one pair of signals interfered between the both sides of ball and two parallel plates, and the signals was observed by photodetectors with scanning the etalon. The results showed that the diameter of steel ball was 78.1893544 mm and measurement uncertainty of 29 nm in confidence level of 95.5%.

  • PDF