• Title/Summary/Keyword: Diamagnetic shift

Search Result 7, Processing Time 0.025 seconds

Diamagnetic Shift of a InGaP-AlInGaP Semiconductor Single Quantum Well under Pulsed-magnetic Fields

  • Choi, B.K.;Kim, Yongmin;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.156-161
    • /
    • 2015
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-$Schr{\ddot{o}}dinger$ equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.

Solvent Dependence and Component of Linear Free Energy Relationship on the Chemical Shift of Methylene Proton in 1-(phenoxymethlyl)benzotriazole Derivatives (1-(phenoxymethyl)benzotriazole 유도체 중 methylene 양성자의 chemical shift 에 관한 자유에너지 관계의 조성과 용매 의존성)

  • Nack Do Sung
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.538-544
    • /
    • 1989
  • The increase of B-type hydrogen bonding character between the hydrogen atom($H{\gamma}$) of methylene group in 1-(phenoxymethyl)benzotriazole (1) and 1-(thiophenoxymetyl)benzotriazole (2) derivatives, and solvents was caused by some factors such as;electron withdrawing strength (${\rho} > 0$) of X-substituent; local diamagnetic effect by Y atom (Y = O(1) > S(2)) with adjacent methylene group; and solvent polarity parameter ($E_T$ = Kcal/mol; acetone; 42.2 > chloroform; 39.0). From the basis on the findings, linear free energy relationship (LFER) components on the substituent chemical shift of methylene group ($CH_2-SCS$) in (1) exhibited a tendency that resonance(R)-effect was much larger than field(F) (or inductive(I))-effect in acetone and that the electrical effects were depend upon the solvent.

  • PDF

Optical Transitions of a InGaP-AlInGaP Semiconductor Single Quantum Well in Magnetic Fields

  • Kim, Yong-Min;Sin, Yong-Ho;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.332.1-332.1
    • /
    • 2016
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-Schr?dinger equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.

  • PDF

NMR Study on Ru(II) Complexes Containnig 2,$2^{\prime} :\;6^{\prime},2^{\prime}^{\prime}$-terpyridine

  • Seok, Won K.;Moon, Sung W.;Kim, Mee Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1207-1210
    • /
    • 1998
  • The diamagnetic six-coordinate ruthenium polypyridyl complexes have been prepared and assigned. 1H NMR spectral studies were used to unravel the ligand field strength and the basicity on the chemical shift to the particular proton of ligand L in [(tpy)(L)RuⅡ(X)]+/2+ (L=bpy, bqi, dmbpy, phen; X=Cl, CN, N3, NCCD3, NO2, SCN) complexes.

Magneto-optical Measurements of Semiconductor Quantum Structures in Pulsed-magnetic Fields

  • Kim, Yongmin
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Semiconductor quantum structures are often characterized by their energy gaps which are modified by the quantum size effect. Energy levels in semiconductors can be realized by optical transitions within confined structures. Photoluminescence spectroscopy in magnetic fields at low temperatures has proved to be a powerful technique for investigating the electronic states of quantum semiconductor heterostructures and offers a complimentary tool to electrical transport studies. In this review, we examine comprehensive investigations of magneto-excitonic and Landau transitions in a large variety of undoped and doped quantum-well structures. Strong magnetic fields change the diamagnetic energy shift of free excitons from quadratic to linear in B in undoped single quantum well samples. Two-dimensional electron gas induced by modulation doping shows pronounce quantum oscillations in integer quantum Hall regime and discontinuous transition at ${\nu}=1$. Such discontinuous transition can be explained as the formation of spin waves or Skyrmions.

$^{13}C$ NMR Analysis for the Characterization of Heme Electronic/Molecular Structure in Horse Myoglobin Cyanide (Myoglobin 시안 단백질에 포함된 Heme에 대한 전자 및 분자구조 규명을 위한 $^{13}C$ NMR분석)

  • Lee, Kang-Bong;Kweon, Jee-Hye;Lee, Ho-Jin;Kim, Young-Man;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 1998
  • The reverse detection heteronuclear multiple quantum coherence, HMQC study of metcyano complex of horse myoglobin(MbCN) has provided the complete assignment of hyperfine shifted resonances of heme carbons attached with proton(s). The application of HMQC experiment to the paramagnetic low-spin MbCN gives clear $^1H$ and $^{13}C$ coherences for the paramagnetic amino acid residues as well as heme side chains, and can be extended to the low-spin paramagnetic hemoprotein derivative for the assignment of natural abundance $^{13}C$ resonances. This assignment strategy can avoid possible ambiguities that may result from the sole utilization of $^1H$ nuclear Overhauser effect for the assignment of heme $^1H$ signals resonating in the diamagnetic region. The resulting 2,4-vinyl ${\alpha}$-carbons and 7-propionate ${\beta}$-carbon follow anomalous anti-Curie behavior, and are indicative of incoplanarity with heme plane. Magnetic/electronic asymmetry of heme induced by proximal histidine(His) makes spread that the hyperfine shifted heme carbon resonances over the range of 250 ppm at $25^{\circ}C$. These heme carbon resonances would be the much more sensitive probe than those of proton resonances in analyzing the nature of heme electronic structure of myoglobin.

  • PDF