목적: 물체 내부의 온도를 비침습적으로 측정할 수 있는 양성자 공명 주파수 이동에 의한 MR 온도영상의 재구성에 center array-sequencing 위상펼침(PU) 기법을 적용시켜 그 성능 및 유용성을 평가하고자 하였다. 대상 및 방법: MR 온도 영상에 앞서 잡음 수준이 다른 타원형 팬텀들을 컴퓨터 모의 실험으로 제작하고 제안된 PU방 법을 적용시켜 잡음에 대한 성능을 평가하였다. MR 실험은 PU 실험과 이를 이용한 온도분포영상획득 실험으로 구분하여 수행되었다. 1.5T MR 영상장치에서 무릎코일과 $T2^*$ 경사자장에코 펄스열을 이용하여 MR 영상을 얻었다. 물통, 오렌지, 아가젤 등의 팬텀을 실험 대상으로 하였고 자체 제작된 온수펌프 장치로 팬텀의 온도를 조절하였다. T 형 열전쌍 온도측정장치로 팬텀 온도를 측정하고 MR 온도영상 결과와 비교하였다. 획득된 MR영상의 위상분포는 제안된 PU방법으로 위상을 편 후 온도분포 영상을 재구성하였다. 가열 전 후의 온도변화와 MR 영상의 위상변화 관계를 이용하여 아가젤 팬텀 내의 MR온도분포 영상을 구하였다. 결과: 제안된 center array-sequencing PU 알고리즘을 이용하여 여러 팬텀에 대한 MR 위상영상의 접힘 현상을 기존 방법보다 간편하고 빠르게 제거할 수 있었고 이를 이용하여 MR 온도영상을 획득할 수 있었다. 결론: 본 연구는 제안된 center array-sequencing 위상펼침 방법이 잡음에 강하고 처리 속도가 빠를 뿐만 아니라 양성자 공명 주파수 이동의 성질을 이용한 MR 온도 영상 획득에 성공적으로 적용될 수 있음을 보였다.
미만성 갑상샘질환은 그 진단 기준이 모호하고 숙련자의 주관적인 진단에 따라 오류가 많이 발생한다. 또한 갑상샘 결절의 초음파 영상에 관한 연구는 활발히 이루어졌지만 미만성 갑상샘질환에 관한 연구 사례는 미흡한 실정이다. 본 연구에서는 정상과 미만성 갑상샘질환의 영상에 GLCM 알고리즘을 적용하여 영상의 특징을 추출하고 추출된 특징값을 파라미터를 이용하여 정량적인 분석을 하였다. W 병원에서 진단한 환자의 갑상샘 초음파 영상을 대상으로 GLCM 알고리즘을 이용하여 정상 199증례, 경도 132증례, 중등도 99증례 총 영상 430증례에 관심영역(50×50 pixel)을 설정하고, 각 영상에서 Autocorrelation, Sum of squares, Sum average, Sum variance, Cluster prominence, Energy 6가지 파라미터를 이용하여 분석하였다. Autocorrelation, Sum of squares, Sum average, Sum variance 4가지 파라미터에서 Normal, Mild, Moderate를 구분하는데 90%이상의 높은 인식률을 보였다. 미만성 갑상샙질환의 초음파영상에서 GLCM 알고리즘을 이용하여 미만성 갑상샘질환의 심각도 정도를 분류하는 기준으로서 가치가 있다. 이러한 파라미터를 적용하여 갑상샘질환의 진단에 있어 육안 판독에 따른 오류를 감소시키고 미만성 갑상샘질환 진단의 2차적인 수단으로 활용 가능할 것으로 기대된다.
의용 초음파 장비는 X-Ray, CT, MRI 등 다른 의료 장비보다 휴대성과 안전성면에서는 장점이 있지만 진단 시 해상도와 화질 저하를 유발하는 스펙클이 생기는 단점이 있다. 그러나 단순한 스펙클 잡음의 제거는 경계선 정보의 손실을 발생시킬 수도 있다. 이에 본 논문에서는 효과적인 스펙클 제거와 손실 없는 경계선 검출을 위해 뉴럴네트워크와 퍼지 클러스터링을 이용한 뉴로-퍼지 스펙클 제거 방법을 제안하였다. 제안된 방법은 입력된 의용 초음파 영상에 대해 먼저 퍼지 클러스터링을 적용하여 세 영역으로 나누고 이후 각 영역별로 별도의 뉴럴 네트워크를 적용하는 방법이다. 실제 실험 및 기존 방법들과의 정성적?정량적 비교 분석을 통해 제안 방법의 유용성을 검증하였다.
We consider the problem of identifying multiple outliers in linear model. The available regression diagnostic methods often do not succeed in detecting multiple outliers because of the masking and swamping effect. Recently, among the various robust estimator of reducing the effect of outliers, LMS(Least Meadian Square) estimator has been to be a suitable method proposed to expose outliers and leverage points. However, as you know it, the data analysis method with LMS estimator is to be taken the median of the squared residuals in the sample which is extracted the sample space. Then this model causes the trouble, for the number of the chosen sample is nCp, i.e. as the size of sample space n is increasing, the number is increasing fastly. And the covariance matrix may be the singular matrix, so that matrix is approching collinearity. Thus we propose a procedure ELMS for the resampling in LMS method and study the size of the effective elementary set in this algorithm.
In cardiac magnetic resonance imaging (CMRI), heart and respiratory motions are one of main obstacles in obtaining diagnostic quality of images. To synchronize CMRI to the physiological motions, ECG and respiratory gatings are commonly used. In this paper multi-biological signal (ECG, respiratory, and SPO2) based smart trigger system is proposed. By using multi-biological signal, the proposed system is robust to the induced noise such as eddy current when gradient pulsing is continuously applied during the examination. Digital conversion of the multi-biological signal makes the system flexible in implementing smart and intelligent algorithm to detect cardiac and respiratory motion and to reject arrhythmia of the heart. The digital data is used for real-time trigger, as well as signal display, and data storage which may be used for retrospective signal processing.
Many diseases cause other diseases with strength of influences and time intervals. Prognostic and therapeutic assessments are the important part of clinical medicine as well as diagnostic assessments. In cases where a patient already has manufestations of multiple disorders (complications), progress forecasting and therapy decision by physicians without support tools are very dificult: physicians often say that "Once complications set in, the patient may die". Treating complications are difficult tasks for physicians, because they have to consider all of the complexities, possibilities and interactions between the diseases. The prediction of multiple disorders has many bundles that arise from such time-dependent interrelationships between diseases and nonlinear progress. This paper proposes a model based on time-dependent influences, which appropriately describes the progress of mulitple disorders, and gives some modificaitons for applying this model to medical domains: time-dependent influence matrix manifestation vector, therapy efficacy matrix, S-shaped curve approximation, definitions of which are provided. This research proposes an algorithm for forecasting the state of each disease on the time horizon and for evaluation of therapy alternatives with not toy example, but real patient history of multiple disorders.disorders.
최근 의료분야에서는 대규모의 데이터를 빠르게 검색 및 추출이 가능하게 의사결정트리 기법에 대한 연구들이 진행되고 있다. 현재 CART, C4.5, CHAID 등 여러 기법이 개발되었는데, 이러한 클레시파이 기법들은 몇몇 의사결정 나무 알고리즘이 이진분리로 분류를 하는데, 나머지 데이터의 결과가 손실될 우려가 있다. 그중 C4.5는 엔트로피의 측정값에 높고 낮음으로 트리 모양을 구성해 가는 방식이고, CART 알고리즘은 엔트로피 매트릭스를 사용하여 범주형 자료나 연속형 자료에 적용할수가 있다. 이에 본 논문에서는 클래시파이 기법 중 C4.5와 CART를 유방암 환자 데이터에 대해 적용하여 실험하여, 그 결과 분석을 통한 성능 평가를 수행하였다. 실험에서는 교차검증을 통해 그 결과에 대한 정확성을 측정하였다.
Due to the frequent occurrence of large-scale disasters such as recent earthquakes, the problem of the safety of old school buildings has emerged. The need to secure safety management technology through constant monitoring is increasing in an attempt to supplement old school buildings with weak disaster response capabilities. Traditional research is approaching the development of an existing sensor-based risk precursor information monitoring system. However, unlike this, in this study, we will focus on the development of a data analysis platform as part of the development of a continuous monitoring system that can be prepared for earthquakes, collapses, and fires, based on constantly measured data. For this reason, the development of a safety diagnostic algorithm based on the optimal sensor-attached points and sensor data reflecting the fragile characteristics of old school buildings was derived. Utilizing this, a message and action manual system for each management / use entity of school buildings after retirement was constructed.
In this paper, fault tolerant digital governor is designed to realize ceaseless controlling and to improve the reliability of control system. Designed digital governor huts duplex I/O module and triplex CPU module and also 2 out of 3 voting algorithm and self diagnostic ability. The Processor module of the system(SIDG-3000) is developed based on 32 Bit industrial microprocessor, which guaranteed high quality of the module and SRAM for data also SRAM for command are separated. The process module also includes inter process communication function and power back up function (SRAM for back-up). System reliability is estimated by using the model of Markov process. It is shown that the reliability of triplex system in mission time can be dramatically improved compared with a single control system Designed digital governor system is applied after modelling of the steam turbine generator system of Buk-Cheju Thermal Power Plant. Simulation is carried out to prove the effectiveness of the designed digital governor system
In this study, PD(partial discharge) signals which occurrs at stator coil of traction Motor are acquired. these data are used for classifying the PD sources. W(Neural Network) has recently applied to classify the PB pattern. The PD data are used for the learning process to classify PD sources. The PD data come from normal specimen and defective specimens such as internal void discharges, slot discharges and surface discharges. PD distribution parameters are calculated from a set of the data, which is used to realize diagnostic algorithm. NN which applies distribution parameters is useful to classify the PD patterns of defective sources generating in stator coil of traction motor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.