A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration.
Purpose: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Methods: Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. Results: The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. Conclusions: We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.
In order to develop a suitable secondary renal disease model and diagnostic markers of renal disease in the rat, the change of PIIIP (aminoterminal procollagen III peptide) in serum and hydroxyproline levels in the renal tissue that reflect the synthesis of extracellular matrix (ECM) during development of experimental renal diseases were observed. Two types of experimental primary diseases, diabetes mellitus administrated by streptozotocin (STZ, 75 mg/kg, i.p.) and liver cirrhosis produced by bile duct ligation/scission (BDL/s) operation, were induced. The hydroxyproline level increased according to the high PIIIP and NCl(carboxyterminal procollagen IV peptide) in Western blot analysis as early as 1 week in the STZ treated-rat kidney. Increased renal ECM was observed at 15 weeks in STZ and BDL/s model under the microscopic examination. High PAS positive reaction was found in capillary basement membrane in STZ treated-rats and mesangium in BDL/s operated rats at this time, showing the histological characteristics of diabetic nephropathy and cirrhotic glomerulonephritis in human, respectively. Such secondary renal failure were supported by additional tests including urinalysis and renal function test. The serum PIIIP detected by ELISA was a useful parameter to estimate synthesis rate of renal ECM during development of renal disease without extrarenal fibrosis i.e. liver cirrhosis in rats. This study is proposed that STZ treatment or BDL/s operation may be a suitable experimental animal model for the induction and development of chronic secondary renal diseases. Morover, it was found that hydroxyproline level in renal tissues was a good parameter of the change of renal ECM at the early stage of the diseases without apparent histological changes. Especially, serum PIIIP could be a choice as a diagnostic or prognostic marker during the development of renal diseases in rats.
The purpose of this study is to establish a model that can quantitatively diagnose personal color. Representative color systems for personal colors have limitations in that it oversimplify personal color diagnosis types or it is difficult to distinguish objective differences between diagnosis types. To develop a brand new color system that enhances this, a PCCS color system capable of logical color was introduced and reclassified based on the four main properties of color. Twenty diagnostic types, which are more diverse than the existing color system were proposed and a quantitative method was used to evaluate the degree of harmony with a subject to find an optimized type of subject. The experimenter's individual competency and subjective intervention were minimized by devising a matrix in which a type suitable for the subject is derived when the coded evaluation result is substituted. Finally a quantitative diagnosis model of personal color consisting of three stages: property diagnosis, coding, and seasonal diagnosis was constructed. It can be seen that this will give diversity, reliability, and accuracy to the existing diagnostic methods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.7
/
pp.956-962
/
2022
Diffuse thyroid disease has ambiguous diagnostic criteria and many errors occur according to the subjective diagnosis of skilled practitioners. If image processing technology is applied to ultrasound images, quantitative data is extracted, and applied to a computer auxiliary diagnostic system, more accurate and political diagnosis is possible. In this paper, 19 parameters were extracted by applying the Gray level co-occurrence matrix (GLCM) algorithm to ultrasound images classified as normal, mild, and moderate in patients with thyroid disease. Using these parameters, an artificial neural network (ANN) was applied to analyze diffuse thyroid ultrasound images. The final classification rate using ANN was 96.9%. Using the results of the study, it is expected that errors caused by visual reading in the diagnosis of thyroid diseases can be reduced and used as a secondary means of diagnosing diffuse thyroid diseases.
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.17-25
/
2023
The alarming global prevalence of Type 2 Diabetes Mellitus (T2DM) has catalyzed an urgent need for robust, early diagnostic methodologies. This study unveils a pioneering approach to predicting T2DM, employing the Extreme Gradient Boosting (XGBoost) algorithm, renowned for its predictive accuracy and computational efficiency. The investigation harnesses a meticulously curated dataset of 4303 samples, extracted from a comprehensive Chinese research study, scrupulously aligned with the World Health Organization's indicators and standards. The dataset encapsulates a multifaceted spectrum of clinical, demographic, and lifestyle attributes. Through an intricate process of hyperparameter optimization, the XGBoost model exhibited an unparalleled best score, elucidating a distinctive combination of parameters such as a learning rate of 0.1, max depth of 3, 150 estimators, and specific colsample strategies. The model's validation accuracy of 0.957, coupled with a sensitivity of 0.9898 and specificity of 0.8897, underlines its robustness in classifying T2DM. A detailed analysis of the confusion matrix further substantiated the model's diagnostic prowess, with an F1-score of 0.9308, illustrating its balanced performance in true positive and negative classifications. The precision and recall metrics provided nuanced insights into the model's ability to minimize false predictions, thereby enhancing its clinical applicability. The research findings not only underline the remarkable efficacy of XGBoost in T2DM prediction but also contribute to the burgeoning field of machine learning applications in personalized healthcare. By elucidating a novel paradigm that accentuates the synergistic integration of multifaceted clinical parameters, this study fosters a promising avenue for precise early detection, risk stratification, and patient-centric intervention in diabetes care. The research serves as a beacon, inspiring further exploration and innovation in leveraging advanced analytical techniques for transformative impacts on predictive diagnostics and chronic disease management.
The aim of this paper is to develop a web-based Virtual Learning System for discrete mathematics learning using CAS (Computer Algebra System), The system contains a series of contents that are common between secondary und university curriculum in discrete mathematics such as sets, relations, matrices, graphs etc. We designed and developed web-based virtual learning contents contained in the proposed system based on Mathematia, webMathematica and phpMath taking advantages of rapid computation and visualization. The virtual learning system for discrete math provides movie lectures and 'practice mode' authored with phpMath in order to enhance conceptual understanding of each movie lesson. In particular, matrix learning is facilitated with conceptual diagram that provides interactive quizzes. Once the quiz results are submitted, Bayesian inference network diagnoses strong and weak parts of learning nodes for generating diagnostic reports to facilitate personalized learning. As part of formative evaluation, the overall responses were collected for future revision of the system with 10 university students.
Toxoplasma gondii infections occur throughout the world, and efforts are needed to develop various vaccine candidates expressing recombinant protein antigens. In this study, influenza matrix protein (M1) virus-like particles (VLPs) consisting of T. gondii rhoptry antigen 4 (ROP4 protein) were generated using baculovirus (rBV) expression system. Recombinant ROP4 protein with influenza M1 were cloned and expressed in rBV. SF9 insect cells were coinfected with recombinant rBVs expressing T. gondii ROP4 and influenza M1. As the results, influenza M1 VLPs showed spherical shapes, and T. gondii ROP4 protein exhibited as spikes on VLP surface under transmission electron microscopy (TEM). The M1 VLPs resemble virions in morphology and size. We found that M1 VLPs reacted with antibody from T. gondii-infected mice by western blot and ELISA. This study demonstrated that T. gondii ROP4 protein can be expressed on the surface of influenza M1 VLPs and the M1 VLPs containing T. gondii ROP4 reacted with T. gondii-infected sera, indicating the possibility that M1 VLPs could be used as a coating antigen for diagnostic and/or vaccine candidate against T. gondii infection.
Objective : Diagnosing acute cerebral infarction is crucial in determining prognosis of stroke patients. Although many serologic tests for prompt diagnosis are available, the clinical application of serologic tests is currently limited. We investigated whether $S100{\beta}$, matrix metalloproteinase-9 (MMP-9), D-dimer, and heat shock protein 70 (HSP70) can be used as biomarkers for acute cerebral infarction. Methods : Focal cerebral ischemia was induced using the modified intraluminal filament technique. Mice were randomly assigned to 30-minute occlusion (n=10), 60-minute occlusion (n=10), or sham (n=5) groups. Four hours later, neurological deficits were evaluated and blood samples were obtained. Infarction volumes were calculated and plasma $S100{\beta}$, MMP-9, D-dimer, and HSP70 levels were measured using enzyme-linked immunosorbent assay. Results : The average infarction volume was $12.32{\pm}2.31mm^3$ and $46.9{\pm}7.43mm^3$ in the 30- and 60-minute groups, respectively. The mean neurological score in the two ischemic groups was $1.6{\pm}0.55$ and $3.2{\pm}0.70$, respectively. $S100{\beta}$, MMP-9, and HSP70 expressions significantly increased after 4 hours of ischemia (p=0.001). Furthermore, $S100{\beta}$ and MMP-9 expressions correlated with infarction volumes (p<0.001) and neurological deficits (p<0.001). There was no significant difference in D-dimer expression between groups (p=0.843). The area under the receiver operating characteristic curve (AUC) showed high sensitivity and specificity for MMP-9, HSP70 (AUC=1), and $S100{\beta}$ (AUC=0.98). Conclusion : $S100{\beta}$, MMP-9, and HSP70 can complement current diagnostic tools to assess cerebral infarction, suggesting their use as potential biomarkers for acute cerebral infarction.
Andre Luiz Ferreira Costa;Karolina Aparecida Castilho Fardim;Isabela Teixeira Ribeiro;Maria Aparecida Neves Jardini;Paulo Henrique Braz-Silva;Kaan Orhan;Sergio Lucio Pereira de Castro Lopes
Imaging Science in Dentistry
/
v.53
no.1
/
pp.43-51
/
2023
Purpose: This study aimed to assess texture analysis(TA) of cone-beam computed tomography (CBCT) images as a quantitative tool for the differential diagnosis of odontogenic and non-odontogenic maxillary sinusitis(OS and NOS, respectively). Materials and Methods: CBCT images of 40 patients diagnosed with OS (N=20) and NOS (N=20) were evaluated. The gray level co-occurrence (GLCM) matrix parameters, and gray level run length matrix texture (GLRLM) parameters were extracted using manually placed regions of interest on lesion images. Seven texture parameters were calculated using GLCM and 4 parameters using GLRLM. The Mann-Whitney test was used for comparisons between the groups, and the Levene test was performed to confirm the homogeneity of variance (α=5%). Results: The results showed statistically significant differences(P<0.05) between the OS and NOS patients regarding 3 TA parameters. NOS patients presented higher values for contrast, while OS patients presented higher values for correlation and inverse difference moment. Greater textural homogeneity was observed in the OS patients than in the NOS patients, with statistically significant differences in standard deviations between the groups for correlation, sum of squares, sum of entropy, and entropy. Conclusion: TA enabled quantitative differentiation between OS and NOS on CBCT images by using the parameters of contrast, correlation, and inverse difference moment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.