• Title/Summary/Keyword: Diabetic cardiomyopathy

Search Result 15, Processing Time 0.02 seconds

Minimal Amount of Insulin Can Reverse Diabetic Heart Function: Sarcoplasmic Reticulum $Ca^{2+}$ Transport and Phospholamban Protein Expression

  • Kim, Hae-Won;Cho, Yong-Sun;Lee, Yun-Song;Lee, Eun-Hee;Lee, Hee-Ran
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.175-182
    • /
    • 1999
  • In the present study, the underlying mechanisms for diabetic functional derangement and insulin effect on diabetic cardiomyopathy were investigated with respect to sarcoplasmic reticulum (SR) $Ca^{2+}-ATPase$ and phospholamban at the transcriptional and translational levels. The maximal $Ca^{2+}$ uptake and the affinity of $Ca^{2+}-ATPase$ for $Ca^{2+}$ were decreased in streptozotocin-induced diabetic rat cardiac SR, however, even minimal amount of insulin could reverse both parameters. Levels of both mRNA and protein of phospholamban were significantly increased in diabetic rat hearts, whereas the mRNA and protein levels of SR $Ca^{2+}-ATPase$ were significantly decreased. In case of phospholamban, insulin treatment reverses these parameters to normal levels. Minimal amount of insulin could reverse the protein levels; however, it could not reverse the mRNA level of SR $Ca^{2+}-ATPase$ at all. Thus, the decreased SR $Ca^{2+}$ uptake appear to be largely attributed to the decreased SR $Ca^{2+}-ATPase$ level, which is further impaired due to the inhibition by the increased level of phospholamban. These results indicate that insulin is involved in the control of intracellular $Ca^{2+}$ in the cardiomyocyte through multiple target proteins via multiple mechanisms for the decrease in the mRNA for both SR $Ca^{2+}-ATPase$ and phospholamban which are unknown and needs further study.

  • PDF

Network Pharmacology Analysis and Efficacy Prediction of GunryeongTang Constituents in Diabetic Complications (당뇨 합병증과 군령탕 구성성분의 네트워크 약리학 분석 및 효능 예측)

  • Jung Joo Yoon;Hye Yoom Kim;Ai Lin Tai;Ho Sub Lee;Dae Gill Kang
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.11-28
    • /
    • 2024
  • Objectives : GunRyeong-Tang(GRT) is a traditional herbal prescription that combines Oryeongsan and Sagunja-tang. This study employed network analysis methods on the components of GRT and target genes related to diabetes complications to predict the improvement effects of GRT on diabetes complications. Methods : The collection of active compounds of GRT and related target genes involved the utilization of public databases and the PubChem database. We selected diabetes complication-related genes using GeneCards and confirmed their correlation through comparative analysis with the target genes of GRT. We constructed a network using Cytoscape 3.9.1 and conducted topological analysis. To predict the mechanism, we performed functional enrichment analysis based on Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results : Through network analysis, 234 active compounds and 1361 related genes were collected from GRT. A total of 9,136 genes related to diabetes complications were collected, and 1,039 target genes overlapping with the components of GRT were identified. The core genes of this network were TP53, INS, AKT1, ALB, and EGFR. In addition, GRT significantly reduced the H9c2 cell size and the expression of myocardial hypertrophy biomarkers (ANP, BNP), which were increased by high glucose (HG). Conclusions : Through this study, we were able to predict the activity and mechanism of action of GRT on diabetes and diabetic complications, and confirmed the potential of GRT as a treatment for diabetes complications through the effect of GRT on improving myocardial hypertrophy for diabetic cardiomyopathy.

Clinical Application of I-123 MIBG Cardiac Imaging (I-123 MIBG Cardiac SPECT의 임상적 적응증)

  • Kang, Do-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.331-337
    • /
    • 2004
  • Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MIBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with I-123 MIBG imaging nay be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

Inhibition of Sarcoplasmic Reticulum $Ca^{2+}$ Uptake by Pyruvate and Fatty Acid in H9c2 Cardiomyocytes: Implications for Diabetic Cardiomyopathy

  • Lee, Eun-Hee;Lee, Hye-Kyung;Kim, Hae-Won;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.195-201
    • /
    • 2005
  • High extracellular glucose concentration was reported to suppress intracellular $Ca^{2+}$ clearing through altered sarcoplasmic reticulum (SR) function. In the present study, we attempted to elucidate the effects of pyruvate and fatty acid on SR function and reveal the mechanistic link with glucose-induced SR dysfunction. For this purpose, SR $Ca^{2+}$-uptake rate was measured in digitonin-permeabilized H9c2 cardiomyocytes cultured in various conditions. Exposure of these cells to 5 mM pyruvate for 2 days induced a significant suppression of SR $Ca^{2+}$-uptake, which was comparable to the effects of high glucose. These effects were accompanied with decreased glucose utilization. However, pyruvate could not further suppress SR $Ca^{2+}$-uptake in cells cultured in high glucose condition. Enhanced entry of pyruvate into mitochondria by dichloroacetate, an activator of pyruvate dehydrogenase complex, also induced suppression of SR $Ca^{2+}$-uptake, indicating that mitochondrial uptake of pyruvate is required in the SR dysfunction induced by pyruvate or glucose. On the other hand, augmentation of fatty acid supply by adding 0.2 to 0.8 mM oleic acid resulted in a dose-dependent suppression of SR $Ca^{2+}$-uptake. However, these effects were attenuated in high glucose-cultured cells, with no significant changes by oleic acid concentrations lower than 0.4 mM. These results demonstrate that (1) increased pyruvate oxidation is the key mechanism in the SR dysfunction observed in high glucose-cultured cardiomyocytes; (2) exogenous fatty acid also suppresses SR $Ca^{2+}$-uptake, presumably through a mechanism shared by glucose.

High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

  • Choi, He Yun;Park, Ji Hye;Jang, Woong Bi;Ji, Seung Taek;Jung, Seok Yun;Kim, Da Yeon;Kang, Songhwa;Kim, Yeon Ju;Yun, Jisoo;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.