• Title/Summary/Keyword: Dexterous Manipulation

Search Result 7, Processing Time 0.024 seconds

Control Program for Dexterous Manipulation by Robotic Hand (물체의 안정한 조작을 위한 동작의 계획과 운동의 실현)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.540-554
    • /
    • 2005
  • This paper presents a motion planning and control method for the dexterous manipulation with a robotic hand. For a given trajectory of an object, a simulation system calculates the necessary joint displacements and contact forces at the fingertip surfaces. These joint displacements and contact forces are the reference inputs to the control loops of the robotic fingers. A task is decomposed into a set of primitive motions, and each primitive motion is executed using the planned output of the simulation system as the reference. Force sensors and dynamic tactile sensors are used to adapt to errors and uncertainties encountered during manipulation. Several experimental results are presented.

A Dexterous Teleoperation System for Micro Parts Handling (마이크로 조립시스템의 원격제어)

  • Kim, Deok-Ho;Kim, Kyung-Hwan;Kim, Keun-Young;Park, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.158-163
    • /
    • 2001
  • Operators suffer much difficulty in manipulating micro/nano-sized objects without the assistance of human interfaces, due to the scaling effects in micro/nano world. This paper presents a micro manipulation system based on the teleoperation techniques which enables the operators to manipulate the objects with ease by transferring both human motion and manipulation skill to a micromanipulator. An experimental setup consisting of a micromanipulator operated under stereo-microscope with the help of intelligent user interface provides a tool that can be used to visualize and manipulate micro-sized 3D objects in a controlled manner. The key features of a micro manipulation system and control strategies using teleoperation techniques for handling micro objects are presented. Experimental results demonstrate the feasibility of this system in precisely controlling trapping and manipulation of micro objects based on teleoperation techniques.

  • PDF

A bilateral servo system design for master-slave manipulators (마스터-슬레이브형 원격 조작기의 쌍방향 서보제어기 제작에 관한 연구)

  • 김기엽;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.524-527
    • /
    • 1988
  • Basic types of bilateral servo systems were described and practical consideration in the bilateral servo controller design was introduced. Power assistance to the operator is essential for high efficiency and accurate force reflection is necessary for dexterous manipulation. This paper shows a controller structure under development at KIMM which employs nonlinear friction compensation and memory based gravity compensation technique for efficiency and dexterity.

  • PDF

Dexterous Manipulation from Pinching to Power Grasping-Effective strategy according to object dimensions and grasping position-

  • Hasegawa, Yasuhisa;Rukuda, Toshio;Kanada, Kensaku
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.24-27
    • /
    • 2003
  • This paper discusses practical strategies for transition from a pinching to a power grasping, where a multi-fingered hand mounted on a robotic arm envelops a cylindrical object on a table. When the manipulation system grasps a cylindrical object like a pen on a desk, a complete enveloping is not impossible in the initial configuration. The system firstly pinches the object only with two or three fingers and then grasp it with fingers and a palm after regrasping. In this pinching-grasping transition maneuver, human unconsciously selects proper strategy according to some conditions including object dimensions and initial pinching positions. In this paper we therefore develop six possible strategies for this pinching-grasping transition and then investigate their performances for some objects with various dimensions and various grasping positions, using numerical simulations. Based on their results, effective strategies are implemented by using a hand-arm system.

  • PDF

Optimized Neurocontroller for Human Control Skill Transfer

  • Seo, Kap-Ho;Changmok Oh;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.42.3-42
    • /
    • 2001
  • A human is an expert in manipulation. We have acquired skills to perform dexterous operations based upon knowledge and experience attained over a long period of time. It is important in robotics to understand these human skills, and utilize them to bring about better robot control and operation It is hoped that the neurocontroller can be trained and organized by simply presenting human teaching data, which implicate human intention, strategy and expertise. In designing a neurocontroller, we must determine the size of neurocontroller. Improper size may not only incur difficulties in training neural nets, e.g. no convergence, but also cause instability and erratic behavior in machines. Therefore, it is necessary to determine the proper size of neurocontroller for human control transfer. In this paper, a new pruning method is developed, based on the penalty-term methods. This method makes ...

  • PDF

A Study on Development of a Smart Wellness Robot Platform (스마트 웰니스 로봇 플랫폼 개발에 관한 연구)

  • Lee, Byoungsu;Kim, Seungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.331-339
    • /
    • 2016
  • This paper developed a home wellness robot platform to perform the roles in basic health care and life care in an aging society. A robotic platform and a sensory platform were implemented for an indoor wellness service. In the robotic platform, the precise mobility and the dexterous manipulation are not only developed in a symbiotic service-robot, but they also ensure the robot architecture of human friendliness. The mobile robot was made in the agile system, which consists of Omni-wheels. The manipulator was made in the anthropomorphic system to carry out dexterous handwork. In the sensing platform, RF tags and stereo camera were used for self and target localization. They were processed independently and cooperatively for accurate position and posture. The wellness robot platform was integrated in a real-time system. Finally, its good performance was confirmed through live indoor tests for health and life care.

Technological Trend of Endoscopic Robots (내시경 로봇의 기술동향)

  • Kim, Min Young;Cho, Hyungsuck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.345-355
    • /
    • 2014
  • Since the beginning of the 21st century, emergence of innovative technologies in robotic and telepresence surgery has revolutionized minimally access surgery and continually has advanced them till recent years. One of such surgeries is endoscopic surgery, in which endoscope and endoscopic instruments are inserted into the body through small incision or natural openings, surgical operations being carried out by a laparoscopic procedure. Due to a vast amount of developments in this technology, this review article describes only a technological state-of-the arts and trend of endoscopic robots, being further limited to the aspects of key components, their functional requirements and operational procedure in surgery. In particular, it first describes technological limitations in developments of key components and then focuses on the description of the performance required for their functions, which include position control, tracking, navigation, and manipulation of the flexible endoscope body and its end effector as well, and so on. In spite of these rapid developments in functional components, endoscopic surgical robots should be much smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies for their intelligent vision and dexterous hands not only from the points of the view of surgical, ergonomic but also from safety. We believe that in these respects a medical robotic technology related to endoscopic surgery continues to be revolutionized in the near future, sufficient enough to replace almost all kinds of current endoscopic surgery. This issue remains to be addressed elsewhere in some other review articles.