• Title/Summary/Keyword: Device-to-Device(D2D)

Search Result 1,729, Processing Time 0.028 seconds

Outage Probability of the Device-to-Device Communication According to the Interference-to-Signal-Ratio Generated by Cellular Networks (셀룰러 시스템의 간섭에 의한 D2D 시스템의 Outage 확률 분석)

  • Min, Hyun-Kee;Seo, Woo-Hyun;Park, Sung-Soo;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • In this paper, the outage probability of device-to-device (D2D) uplink communication underlaying cellular networks is analyzed over Rayleigh fading. We assume that a D2D pair and M cellular user equipments share the same frequency resources. To prevent any harmful interference from a D2D transmitter to the BS, the maximum transmit power of the D2D transmitter is strictly limited. Under these assumptions, the outage probability is represented as a function of the interference-to-signal ratio from M cellular user equipments to a D2D receiver and the number of cellular user equipments, M. In addition, the interference-to-signal ratio is represented as a function of distances among D2D equipments, cellular user equipments and the BS. Simulation results validate these analytical results.

Feasibility Study for Device-to-Device Communications Using Unlicensed Bands in a Cellular Network (셀룰러 네트워크에서 비면허 대역을 활용한 단말 간 직접통신 타당성 연구)

  • Kim, Hyeon-Min;Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.208-211
    • /
    • 2016
  • Device-to-Device communication(D2D) enables devices in proximity to communicate directly without going through the network infrastructure. In particular, D2D communications in a cellular network can improve the spectral efficiency by allowing the reuse of cellular resources. However, it is not easy to maintain the channel quality of the D2D links and to protect the cellular links from the D2D interferences, since the resource allocations for the cellular users will change with time due to the time-varying nature of the cellular channels. To mitigate the performance degradation of D2D links, we propose to exploit unlicensed bands as auxiliary resources when the D2D links share the uplink cellular resources. The effectiveness of the proposed scheme is verified through simulations.

Geometry Information-based Practical Device Identification for Local Device-to-device Communication

  • Park, Eun-hye;Lee, Kwang-Eog;Kang, Joon-hyuk
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.159-167
    • /
    • 2014
  • Local device-to-device (D2D) communication between two smart mobile devices is becoming increasingly popular. The first key step in starting a D2D communication is to discover and identify the remote target device to establish a link. However, existing device discovery mechanisms either require users to explicitly identify the ID of the target device or rely on inaccurate beamforming technology. This paper presents two novel device identification algorithms using a variety of embedded sensors. The algorithms only require that users to point two devices towards each other. This paper describes the algorithms, analyzes their accuracy using analytical models, and verifies the results using simulations.

Device-to-Device Relay Cooperative Transmission Based on Network Coding

  • Wang, Jing;Ouyang, Mingsheng;Liang, Wei;Hou, Jun;Liu, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3431-3445
    • /
    • 2017
  • Due to the advantages of low transmit power consumption, high spectral efficiency and extended system coverage, Device-to-Device (D2D) communication has drawn explosive attention in wireless communication field. Considering that intra-cell interference caused between cellular signals and D2D signals, in this paper, a network coding-based D2D relay cooperative transmission algorithm is proposed. Under D2D single-hop relay transmission mode, cellular interfering signals can be regarded as useful signals to code with D2D signals at D2D relay node. Using cellular interfering signals and network coded signals, D2D receiver restores the D2D signals to achieve the effect of interference suppression. Theoretical analysis shows that, compared with Amplify-and-forward (AF) mode and Decode-and-forward (DF) mode, the proposed algorithm can dramatically increase the link achievable rate. Furthermore, simulation experiment verifies that by employing the proposed algorithm, the interference signals in D2D communication can be eliminated effectively, and meanwhile the symbol error rate (SER) performance can be improved.

Utility of 3D Echocardiography for Device Sizing During Transcatheter ASD Closure: A Comparative Study

  • Avinash Mani;Sivadasanpillai Harikrishnan;Bijulal Sasidharan;Sanjay Ganapathi;Ajit Kumar Valaparambil
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.4
    • /
    • pp.180-187
    • /
    • 2023
  • BACKGROUND: Two-dimensional (2D) transesophageal echocardiography (TEE) is commonly used for assessing patients undergoing transcatheter atrial septal defect (ASD) device closure. 3D TEE, albeit providing high resolution en-face images of ASD, is used in only a fraction of cases. We aimed to perform a comparative analysis between 3D and 2D TEE assessment for ASD device planning. METHODS: This was a prospective, observational study conducted over a period of one year. Patients deemed suitable for device closure underwent 2D and 3D TEE at baseline. Defect characteristics, assessed separately in both modalities, were compared. Using regression analysis, we aimed to derive an equation for predicting device size using 3D TEE parameters. RESULTS: Thirty patients were included in the study, majority being females (83%). The mean age of the study population was 40.5 ± 12.05 years. Chest pain, dyspnea and palpitations were the common presenting complaints. All patients had suitable rims on 2D TEE. A good agreement was noted between 2D and 3D TEE for measured ASD diameters. 3D TEE showed that majority of defects were circular in shape (60%). The final device size used had high degree of correlation with 3D defect area and circumference. An equation was devised to predict device size using 3D defect area and circumference. The mean device size obtained from the equation was similar to the actual device size used in the study population (p = 0.31). CONCLUSIONS: Device sizing based on 3D TEE parameters alone is equally effective for transcatheter ASD closure as compared to 2D TEE.

Effective Interference Alignment for Device-to-Device Communication Underlaid in Multi-Cell Interference Network (다중셀 간섭 네트워크와 중첩된 D2D 통신을 위한 효과적인 간섭 정렬 기법)

  • Qu, Xin;Kang, Chung Gu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.161-163
    • /
    • 2014
  • We consider the device-to-device (D2D) communication underlaying multi-cell interference system, in which the cellular downlink (DL) resource is reused by K cells and two D2D transmission links within each cell. In this paper, it has been shown that the downlink intra-cell and inter-cell interference can be effectively handled by interference alignment (IA) technique, as long as the simultaneous D2D links are properly selected or power-controlled so that they may not incur interference to the base stations in the same and neighbor cells. In particular, we provides the IA technique that can achieve the theoretically maximum possible degree of freedom (DOF), demonstrating that a total of (K+1)M degrees of freedom (DOFs) can be achieved for K-cell interference system with two underlaying D2D links, where base stations, cellular UE's, and D2D UE's all have M transmit and receive antennas.

Shared Relay-Based Interference Management Schemes for Device-to-Device Radio Underlaying Cellular Networks (셀룰러 네트워크상의 D2D 통신을 위한 공유릴레이 기반 간섭 관리 기법)

  • Yang, Mochan;Wu, Shanai;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.371-380
    • /
    • 2013
  • D2D (Device-to-Device) communication on an underlying cellular infrastructure which exploits the same spectrum has several advantages such as increased resource utilization and improved cellular coverage. However, D2D communication system needs to cope with ICI (Inter-Cell Interference) and interference between cellular and D2D links. As a result, macro UEs (User Equipments), especially those located near cell edge, will suffer from serious link performance degradation. We propose a novel interference avoidance mechanism assisted by SRN (Shared Relay Node) in this paper. SRN not only performs data re-transmission as a usual Type II relay but also has several features newly defined to avoid interference between cellular and D2D links. In particular, we suggest resource allocation methods based on the SRN for effective interference avoidance, and evaluate their performance through computer simulations.

Interference Mitigation Scheme by Antenna Selection in Device-to-Device Communication Underlaying Cellular Networks

  • Wang, Yuyang;Jin, Shi;Ni, Yiyang;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.429-438
    • /
    • 2016
  • In this paper, we investigate an interference mitigation scheme by antenna selection in device-to-device (D2D) communication underlaying downlink cellular networks. We first present the closed-form expression of the system achievable rate and its asymptotic behaviors at high signal-to-noise ratio (SNR) and the large antenna number scenarios. It is shown that the high SNR approximation increases with more antennas and higher ratio between the transmit SNR at the base station (BS) and the D2D transmitter. In addition, a tight approximation is derived for the rate and we reveal two thresholds for both the distance of the D2D link and the transmit SNR at the BS above which the underlaid D2D communication will degrade the system rate. We then particularize on the small cell setting where all users are closely located. In the small cell scenario, we show that the relationship between the distance of the D2D transmitting link and that of the D2D interfering link to the cellular user determines whether the D2D communication can enhance the system achievable rate. Numerical results are provided to verify these results.

A Novel Frequency Planning and Power Control Scheme for Device-to-Device Communication in OFDMA-TDD Based Cellular Networks Using Soft Frequency Reuse (OFDMA-TDD 기반 셀룰러 시스템에서 디바이스간 직접통신을 위한 SFR 자원할당 및 전송 전력조절 방법)

  • Kim, Tae-Sub;Lee, Sang-Joon;Lim, Chi-Hun;Ryu, Seungwan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.885-894
    • /
    • 2012
  • Currently, Demand of data traffic has rapidly increased by popular of smart device. It is very difficult to accommodate demand of data traffic by limited resource of base station (BS). To solve this problem, method has proposed that the Device-to-Device (D2D) reduce frequency overload of the BS and all of the user equipment (UE) inside the BS and neighbor BS don't allow communicating directly to BS. However, in LTE-Advance system cellular link and sharing radio resources of D2D link, the strong interference of the cellular network is still high. So we need to eliminate or mitigate the interference. In this paper, we use the transmission power control method and Soft Frequency Reuse (SFR) resource allocation method to mitigate the interference of the cellular link and D2D link. Simulation results show that the proposed scheme has high performance in terms of Signal to Noise Ratio (SINR) and system average throughput.

Greedy Heuristic Resource Allocation Algorithm for Device-to-Device Aided Cellular Systems with System Level Simulations

  • Wang, Xianxian;Lv, Shaobo;Wang, Xing;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1415-1435
    • /
    • 2018
  • Resource allocation in device-to-device (D2D) aided cellular systems, in which the proximity users are allowed to communicate directly with each other without relying on the intervention of base stations (BSs), is investigated in this paper. A new uplink resource allocation policy is proposed by exploiting the relationship between D2D-access probability and channel gain among variant devices, such as cellular user equipments (CUEs), D2D user equipments (DUEs) and BSs, etc., under the constraints of their minimum signal to interference-plus-noise ratio (SINR) requirements. Furthermore, the proposed resource-allocation problem can be formulated as the cost function of "maximizing the number of simultaneously activated D2D pairs subject to the SINR constraints at both CUEs and DUEs". Numerical results relying on system-level simulations show that the proposed scheme is capable of substantially improving both the D2D-access probability and the network throughput without sacrificing the performance of conventional CUEs.