• Title/Summary/Keyword: Device to Device (D2D)

Search Result 1,734, Processing Time 0.046 seconds

Reaction of α-Fe2O3 Red Pigment and Transparent Dielectric Materials (적색안료인 α-Fe2O3와 투명 유전체의 반응)

  • Kim, Bong-Chul;Han, Yong-Soo;Song, Yoon-Ho;Suh, Kyung-Soo;Lee, Jin-Ho;Lee, Nam-Yang;Park, Lee-Soon;Lee, Byung-Kyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • We searched thermal stability of ${\alpha}-Fe_2O_3$ using red color filter for display. In the PDP(Plasma Display Panel), the color filter layer is lied normally between front glass and transparent dielectric materials, so it might be needed to study the reaction of ${\alpha}-Fe_2O_3$ and transparent dielectric materials. The transparent dielectric materials containing ZnO has good transparency. Red colorlayer of ${\alpha}-Fe_2O_3$ contacted with dielectric material layer containing ZnO is changed to colorlessness over 500$^{\circ}$C because ZnO defuse ${\alpha}-Fe_2O_3$, the dielectric materials without ZnO, however, maintain red color at the same condition. We suggest that a layer contacting with ${\alpha}-Fe_2O_3$ red color layer has to lie with transparent dielectric materials without ZnO, then the materials containing ZnO is coated over to get color of ${\alpha}-Fe_2O_3$ for red color filter

Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell (유기태양전지의 효율 및 수명 향상을 위한 기능성 계면 소재 연구)

  • Hong, Kihyon;Park, Sun-Young;Lim, Dong Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.447-454
    • /
    • 2014
  • Organic solar cells (OSCs) have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible devices. In spite of the high power conversion efficiency (PCE) of 10 %, the OSCs still have a draw back of their low environmental stability due to the oxidization of aluminum cathode and etching of transparent conducting oxide as electrode. To solve these problems, the inverted structured OSCs (I-OSCs) having greatest potential for achieving an improvement of device performances are suggested. Therefore, there are a lot of studies to develope of interface layer based on organic/inorganic materials for the electron transport layer (ETL) and passivation layer, significant advancements in I-OSCs have driven the development of interface functional materials including electron transport layer. Recent efforts to employing 2D/3D zinc oxide (ZnO) based ETL into I-OSCs have produced OSCs with a power conversion efficiency level that matches the efficiency of ~9 %. In this review, the technical issues and recent progress of ZnO based ETL in I-OSCs to enhancement of device efficiency and stability in terms of materials, process and characterization have summarized.

A Study on the Tensile Deformation Characteristics of Knits and Appearance Using 3D Digital Virtual Clothing Systems (니트소재의 인장변형 특성과 3D 디지털 클로딩 시스템에 의한 외관표현에 관한 연구)

  • Choi, Kyoung-Me;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.16 no.2
    • /
    • pp.151-162
    • /
    • 2012
  • The industry-wide development of digital technologies has also affected the textile and fashion industries immensely. The applications of 3D technology, virtual reality, and/or augmented reality systems have helped to create novel fashion brands based on the marriage of IT and textile/fashion industries. 3D digital virtual clothing systems have been developed to help the textile and fashion industries in terms of the planning, manufacturing, marketing and sales sectors. So far, most of the development effort for the 3d virtual clothing systems has been focused on the woven fabrics. The characteristics of woven fabrics differ from those of knitted fabric. Since the physical structures and mechanical properties of the knitted fabrics are definitely different from those of woven fabrics, the simulation process for the knitted fabrics should follow different approaches. The loops in a knitted fabric deform easily. The deformation results in a readily stretchable fabric appearance. Cloth simulation mostly employs models that approximate the mechanical properties of linear elastic planes. This simulation scheme does not, however, describe well enough the behavior of knitted fabrics, which deviate largely from the linear isotropic material characteristics. This study aims at characterizing the tensile deformation and surface textures of a knitted fabric product. Tensile deformation curves for the wale, course, and bias direction are analyzed. The surface texture of the knitted fabric is analyzed by using a 3-dimensional scanning device.

Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems (역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계)

  • Ham, Y.B.;Kim, Y.;Noh, J.H.;Shin, S.S.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors

  • Lim, Dong-Hyuk;Lee, Sang-Yoon;Choi, Woo-Seok;Park, Jun-Eun;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.278-285
    • /
    • 2012
  • A digital readout IC for capacitive sensors is presented. Digital capacitance readout circuits suffer from static capacitance of sensors, especially single-ended sensors, and require large passive elements to cancel such DC offset signal. For this reason, to maximize a dynamic range with a small die area, the proposed circuit features digital filters having a coarse and fine compensation steps. Moreover, by employing switched-capacitor circuit for the front-end, correlated double sampling (CDS) technique can be adopted to minimize low-frequency device noise. The proposed circuit targeted 8-kHz signal bandwidth and oversampling ratio (OSR) of 64, thus a $3^{rd}$-order ${\Delta}{\Sigma}$ modulator operating at 1 MH was used for pulse-density-modulated (PDM) output. The proposed IC was designed in a 0.18-${\mu}m$ CMOS mixed-mode process, and occupied $0.86{\times}1.33mm^2$. The measurement results shows suppressed DC power under about -30 dBFS with minimized device flicker noise.

Development and performance test of a complex laser interferometer for simultaneously measuring displacement and 2-D angles (변위 각도 동시 측정용 복합 레이저 간섭계의 제작과 특성 분석)

  • Kim J.W.;Kim J.A.;Kang C.S.;Eom T.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.573-576
    • /
    • 2005
  • A compact linear and angular displacement measurement device was developed by combining a Michelson interferometer and an autocollimator to characterize the movement of a precision stage. A Michelson interferometer and an autocollimator are typical devices for measuring linear and angular displacement, respectively. By controlling the polarization of reflected beam from the target mirror of the interferometer, some part of light was retro-reflected to the light source and the reflected beam was used for angle measurement. The interferometer and the autocollimator use the same optic axis and the target mirror can be easily and precisely aligned orthogonal to the optic axis by monitoring the autocollimator s signal. The autocollimator was designed for angular resolution of 0.1 arcsec and dynamic range of 60 arcsec. The nonlinearity error of interferometer was minimized by trimming the gain and offset of the photodiode signals. Through the experiments, we evaluate the performance of measurement device and discuss its applications.

  • PDF

A Beamforming-Based Video-Zoom Driven Audio-Zoom Algorithm for Portable Digital Imaging Devices

  • Park, Nam In;Kim, Seon Man;Kim, Hong Kook;Kim, Myeong Bo;Kim, Sang Ryong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • A video-zoom driven audio-zoom algorithm is proposed to provide audio zooming effects according to the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone array in conjunction with a soft masking process that uses the phase differences between microphones. The audio-zoom processed signal is obtained by multiplying the audio gain derived from the video-zoom level by the masked signal. The proposed algorithm is then implemented on a portable digital imaging device with a clock speed of 600 MHz after different levels of optimization, such as algorithmic level, C-code and memory optimization. As a result, the processing time of the proposed audio-zoom algorithm occupies 14.6% or less of the clock speed of the device. The performance evaluation conducted in a semi-anechoic chamber shows that the signals from the front direction can be amplified by approximately 10 dB compared to the other directions.

  • PDF

Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film (유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향)

  • Lim, Hyun-Su;Oh, Jung-Min;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

Noise Analysis and Reduction Methods of the All-in One Window Ventilation System (창호일체형 환기장치의 소음분석 및 저감방안)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.43-55
    • /
    • 2013
  • The window ventilation system based on the heat recovery device was developed which make air ventilation possible without opening the windows. However, mechanical and aerodynamic noises were come to pass which annoyed people in rooms. In the present study, noise of new window ventilation system was measured in both general room and anechoic chamber. Also, the noise path was detected to find cause of noise generation and vulnerable area of the device. Sound absorptive and insulation materials were applied to mitigate the noise. Finally, an alternative noise control method was suggested which can satisfy with the indoor noise standards. As a result, it was shown that the cause of noise was the low transmission loss in the ventilation system. As a result, it was shown that the main noise source of the ventilation system was the blower and the major cause of noise was the low transmission loss of the ventilation system. It is also concluded that the noise levels complies with the noise standards of 40 dBA when 2 mm rubber sheet is applied inside the ventilation system.

Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant (원전 배관 자동 초음파 검사를 위한 다채널 초음파 시스템 개발)

  • Lee, Hee-Jong;Cho, Chan-Hee;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needsfor development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.