• Title/Summary/Keyword: Device to Device (D2D)

Search Result 1,734, Processing Time 0.036 seconds

Development of Preprocessor for Real-time Quality Evaluation of Milk - Automatic Supplying, Mixing and Temperature Control - (우유의 실시간 품질판정을 위한 전처리장치 개발 - 자동 공급, 혼합 및 온도 제어 -)

  • Choi, C.H.;Kim, Y.J.;Kim, J.D.;Kim, K.S.;Noh, H.W.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.130-135
    • /
    • 2008
  • The purpose of this study was to develop a preprocessor for real-time portable quality evaluation system of milk. The preprocessor consisted of two flow pump to supply milk sample and reaction reagent at given volume, a fan to mix milk with reaction reagent, a thermoelectric device to maintain sample temperatures of $40^{\circ}C$, and I/O interface to control signals. The tests conducted with different level of flow rate of pump, fan speed, ambient temperature, and intial temperature of mixtures. To evaluate performance of the preprocessor, the supplied volumes, color changes, and temperatures were measured and analyzed. The results showed that the preprocessor could control supplying volumes, mixing, temperatures of samples automatically. The preprocessor showed good performance to be used for portable quality evaluation system of milk.

Experimental Study on Resistance and Running Attitude of an Amphibious Assault Vehicle with a Hydrofoil as a Trim-control Device (상륙돌격장갑차의 수상항주 시 트림조절을 위한 수중익에 의한 저항 및 자세변화에 대한 실험적 연구)

  • Lee, Seung-Jae;Lee, Tae-il;Lee, Jong-Jin;Nam, Wonki;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.96-101
    • /
    • 2017
  • Amphibious assault vehicles have been used in the Marine Corps. In recent years, their ability to move faster is becoming one of the most important considerations. At high speeds, the vehicle tends to sink at the stern and sometimes the opposite occurs. Such dynamic trim plays a significant role in determining the vehicle's hydrodynamic performance. Furthermore, an excessive trim by stern upsets the viewing angle. We have thus considered a stern hydrofoil to reduce the dynamic trim of the amphibious assault vehicle. Laboratory-scale resistance tests were conducted in a towing tank at the Seoul National University (SNU). This study aims to make a preliminary assessment of the hydrodynamic performance of the vehicle with the stern hydrofoil and to investigate permissible speed range of the vehicle. The experimental results show that the stern hydrofoil can successfully achieve a reduction of both the dynamic trim and the hydrodynamic resistance at running speeds above 20 km/h.

The Efficacy of Three-Dimensional Sweeping Mode Extracorporeal Shockwave Treatment for Plantar Fasciitis (3차원 동적집속모드 체외충격파 기기를 이용한 족저근막염 치료의 유용성)

  • Lim, Joo Ae;Lee, Chan Hee;Park, Jae Han
    • Journal of Korean Foot and Ankle Society
    • /
    • v.26 no.2
    • /
    • pp.84-87
    • /
    • 2022
  • Purpose: This was a pilot study to examine the clinical usefulness of the newly developed three-dimensional sweep mode extracorporeal shockwave treatment (ESWT) in patients with plantar fasciitis. Materials and Methods: Three-dimensional sweep mode ESWT was performed once a week for 5 weeks in patients with plantar fasciitis who showed no improvement with the conventional conservative treatment. A 100-mm visual analogue scale (VAS) reading for pain from walking and at rest after walking were collected before the treatment and 8 and 16 weeks after the initial treatment. In addition, the Foot and Ankle Outcome Score (FAOS) and EuroQol-5-dimension (EQ-5D) scores before and 16 weeks after the treatment were evaluated. Results: VAS for pain for walking improved from 50.60±8.38 to 19.80±15.61 at 8 weeks after the initial treatment (p=0.008) and 9.80±9.62 at 16 weeks after the treatment (p<0.001). VAS for pain at rest after walking improved from 36.60±19.55 to 11.80±12.95 at 8 weeks after the initial treatment (p=0.052) and 8.80±8.87 at 16 weeks after the treatment (p=0.024). Preoperative FAOS increased from an average of 74.80±9.73 before the treatment to an average of 81.00±8.86 at week 16 after the procedure (p=0.49) and compared to pre-treatment levels, there was a decrease of one level in the anxiety/depression domain of the EQ-5D, post-treatment. Conclusion: The results of this preliminary study confirmed that the newly developed EWST with the smart forging sweep mode was effective in improving pain and function in plantar fasciitis.

HDF: Hybrid Debugging Framework for Distributed Network Environments

  • Kim, Young-Joo;Song, Sejun;Kim, Daeyoung
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.222-233
    • /
    • 2017
  • Debugging in distributed environments, such as wireless sensor networks (WSNs), which consist of sensor nodes with limited resources, is an iterative and occasionally laborious process for programmers. In sensor networks, it is not easy to find unintended bugs that arise during development and deployment, and that are due to a lack of visibility into the nodes and a dearth of effective debugging tools. Most sensor network debugging tools are not provided with effective facilities such as real-time tracing, remote debugging, or a GUI environment. In this paper, we present a hybrid debugging framework (HDF) that works on WSNs. This framework supports query-based monitoring and real-time tracing on sensor nodes. The monitoring supports commands to manage/control the deployed nodes, and provides new debug commands. To do so, we devised a debugging device called a Docking Debug-Box (D2-Box), and two program agents. In addition, we provide a scalable node monitor to enable all deployed nodes for viewing. To transmit and collect their data or information reliably, all nodes are connected using a scalable node monitor applied through the Internet. Therefore, the suggested framework in theory does not increase the network traffic for debugging on WSNs, and the traffic complexity is nearly O(1).

Construction of a 40-channel SQUID System and Its Application to Neuromagnetic Measurements

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Park, Y.K.;Park, J.C.;Lee, D.H.;Ahn, C.B.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • A 40-channel superconducting quantum interference device (SQUID) system was constructed for measuring neuromagnetic fields. Main features of the system are the use of double relaxation oscillation SQUIDs (DROSs), and planar gradiometers measuring magnetic field components tangential to the head surface. The DROSs with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature dc preamplifiers and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. Average noise level of the 40 channels is around 1.2 $fT/cm/{\surd}Hz$ at 100 Hz, corresponding to a field noise of 5 $fT/{\surd}Hz$, operated inside a magnetically shielded room. The SQUID insert was designed to have low thermal load, minimizing the loss of liquid helium. The constructed system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

A Investment on Wire-wireless Communication Method for Electrical Device Infrastructure Maintenance (전력설비 관리를 위한 무선 및 유선 통신 방법에 관한 고찰)

  • Kim, Young-Eok;Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.354-359
    • /
    • 2016
  • Power plants maintenance data is to be sent to management server system via a communication network. In this case, reliable communication network is required. Transmission of the power plants maintenance data is used in the wired communication network or wireless communication network. PLC communication network is a kind of wired communication network. However PLC communication network is easily affected by noise. On the vulnerable areas in power line system, such as a mountain or rural areas, it is difficult to form a power line communication network. For a wireless communication, environment are also influenced factors in wireless communication. Harsh environmental factors are bring the communication characteristic degradation. In such areas it can be used a combination of two networks and in this way the complementary function can be achieved. Power plants are distributed in various regions across the country. The appropriate communication network is needed to maintain the power plant.This study investigated the effect of environment on the wired communication and wireless communication. It would examine a variable factor which is affect to the communication characteristic. We used PLC communication for wired communication network and ZigBee communication for wireless communication network. We investigated the characteristics of a single communication network and it raised the need for a complex communication technology to complement a single communication network.

Iot Based Vision and Remote Control a Compact Mobile Robot System (IoT 기반의 비전 및 원격제어 소형 이동 로봇 시스템)

  • Jeon, Yun Chae;Choi, Hyeri;Yoon, Ki-Cheol;Kim, Gwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Recently, the small-size mobile robots with remote-control are rapidly growth which market of mobile is increased in the world. Especially, the smart-phones are widely used for interface device in the small size of a mobile robot. The research goal is control system design which is applied to miniaturization of a mobile robot using smart-phone and it can be confirmed performance for designed system. Meanwhile, the fabrication of mini-mobile robot can also be remote-control operation through the WIFI performance of a smart-phone. The smart-phone is used to remote-control for robot operation which control data transmit to robot via the WIFI network. To drive the robot, we can observe by the smart-phone screen and it can easily adjust the robot drive condition and direction by smart-phone button. Consequentially, there was no malfunction and images were printed out well. However, in drive, because of blind spot, robot was bumped into obstacle. Therefore, the additional test is necessary to sensor for blind spot which sensor can be equipment to mobile robot. In addition, the experiment with robot object recognition is needed.

Three dimensional GPR survey for the exploration of old remains at Buyeo area (부여지역 유적지 발굴을 위한 3차원 GPR 탐사)

  • Kim Jung-Bo;Son Jeong-Sul;Yi Myeong-Jong;Lim Seong-Keun;Cho Seong-Jun;Jeong Ji-Min;Park Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.49-69
    • /
    • 2004
  • One of the important roles of geophysical exploration in archeological survey may be to provide the subsurface information for effective and systematic excavations of historical remains. Ground Penetrating Radar (GPA) can give us images of shallow subsurface structure with high resolution and is regarded as a useful and important technology in archeological exploration. Since the buried cultural relics are the three-dimensional (3-D) objects in nature, the 3-D or areal survey is more desirable in archeological exploration. 3-D GPR survey based on the very dense data in principle, however, might need much higher cost and longer time of exploration than the other geophysical methods, thus it could have not been applied to the wide area exploration as one of routine procedures. Therefore, it is important to develop an effective way of 3-D GPR survey. In this study, we applied 3-D GPR method to investigate the possible historical remains of Baekje Kingdom at Gatap-Ri, Buyeo city, prior to the excavation. The principal purpose of the investigation was to provide the subsurface images of high resolution for the excavation of the surveyed area. Besides this, another purpose was to investigate the applicability and effectiveness of the continuous data acquisition system which was newly devised for the archeological investigation. The system consists of two sets of GPR antennas and the precise measurement device tracking the path of GPR antenna movement automatically and continuously Besides this hardware system, we adopted a concept of data acquisition that the data were acquired arbitrary not along the pre-established profile lines, because establishing the many profile lines itself would make the field work much longer, which results in the higher cost of field work. Owing to the newly devised system, we could acquire 3-D GPR data of an wide area over about $17,000 m^2$ as a result of the just two-days field work. Although the 3-D GPR data were gathered randomly not along the pre-established profile lines, we could have the 3-D images with high resolution showing many distinctive anomalies which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This case history led us to the conclusion that 3-D GPR method can be used easily not only to examine a small anomalous area but also to investigate the wider region of archeological interests. We expect that the 3-D GPR method will be applied as a one of standard exploration procedures to the exploration of historical remains in Korea in the near future.

  • PDF

Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

  • Jeong, Dae-Kyo;Lee, Sang-Chul;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-70
    • /
    • 2012
  • Purpose : The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Materials and Methods : Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. Results : The effective dose was the highest for Somatom Sensation 10 (425.84 ${\mu}Sv$), followed by AZ3000CT (332.4 ${\mu}Sv$), Somatom Emotion 6 (199.38 ${\mu}Sv$), and 3D eXaM (111.6 ${\mu}Sv$); it was the lowest for Implagraphy (83.09 ${\mu}Sv$). The CBCT showed significant variation in dose level with different device. Conclusion : The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.