• Title/Summary/Keyword: Device sharing

Search Result 295, Processing Time 0.027 seconds

Implementation of Web-based Data Storage Service System Using External Storage Devices (외장형 저장장치를 이용한 웹 기반 데이터 스토리지 서비스 시스템 구현)

  • Kim, Buemjun;Lee, Kyounghee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.111-114
    • /
    • 2017
  • As digital contents are widely used and require increasingly high quality, the data storage services over Internet also become more and more important. One of popular services, web-hard, provides lots of users with web-based functions for data storage, management and sharing but such storage utilization requires quite high cost compared to using portable storage devices. Moreover, some users may avoid putting their important data into open Internet area. On the other hand, portable storage devices are cheaper but can be used only when they are physically connected to host devices such as PC. Also additional management and security functions should be equipped to support data sharing among users. In this paper, we propose a web-based data storage system combining those advantages of aforementioned two approaches. The proposed system immediately provides web-based services for data management and sharing when a portable device such as SDD is connected to the server.

  • PDF

File Sharing Algorithm based Mutual Cooperation using Smart Device (스마트 기기를 이용한 상호 협력 기반 파일 공유 시스템)

  • Jeong, Pil-Seong;Cho, Yang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.53-60
    • /
    • 2018
  • With the development of information and communication technology, we have been able to access and manage documents containing corporate information anytime and anywhere using smart devices. As the work environment changes to smart work, the scope of information distribution is expanded, and more efforts are needed to manage security. This paper proposes a file sharing system that enables users who have smart devices to manage and share files through mutual cooperation. Proposed file sharing system, the user can add a partner to share files with each other when uploading files kept by spliting the part of the file and the other uses an algorithm to store on the server. After converting the file to be uploaded to base64, it splits it into encrypted files among users, and then transmits it to the server when it wants to share. It is easy to manage and control files using dedicated application to view files and has high security. Using the system developed with proposed algorithm, it is possible to build a system with high efficiency even for SMEs(small and medium-sized enterprises) that can not pay much money for security.

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.

Efficient Multi-site Testing Using ATE Channel Sharing

  • Eom, Kyoung-Woon;Han, Dong-Kwan;Lee, Yong;Kim, Hak-Song;Kang, Sungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.259-262
    • /
    • 2013
  • Multi-site testing is considered as a solution to reduce test costs. This paper presents a new channel sharing architecture that enables I/O pins to share automatic test equipment (ATE) channels using simple circuitry such as tri-state buffers, AND gates, and multiple-input signature registers (MISR). The main advantage of the proposed architecture is that it is implemented on probe cards and does not require any additional circuitry on a target device under test (DUT). In addition, the proposed architecture can perform DC parametric testing of the DUT such as leakage testing, even if the different DUTs share the same ATE channels. The simulation results show that the proposed architecture is very efficient and is applicable to both wafer testing and package testing.

An implementation of reliable data sharing multi-stack system in virtualized environment (신뢰성 있는 멀티스택 기반의 가상화된 데이터 동시공유 시스템의 구현)

  • Han, Kyujong;Jeon, Dongwoon;Kim, Doohyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.259-265
    • /
    • 2016
  • In this paper, we present an architecture for the fault isolation by applying virtualization-based multi-stack technologies. We propose the simultaneous sharing and switching mechanism using virtualied serial communications. Each guest OS has its own virtual serial device. The distribution module provides communications between the guest OS's through the virtual serial devices and simultaneously detect the liveness of the guest OS. The suggested mechanism has been implemented in VirtualBox and shows satisfactory performance in transmission speed and data sharing capability with virtual RS232.

A Study on the Optimal Algorithm to Find the Minimum Numbers of Sharing Resources in Semiconductor Production Systems (반도체 생산 시스템에서의 최소 공유 장비를 구하는 최적 알고리즘에 관한 연구)

  • 반장호;고인선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.61-61
    • /
    • 2000
  • Since FMS(Flexible Manufacturing System) such as semiconductor production systems have the characteristic that each device has to be commonly used in several stages, it is difficult to find an optimal solution. In this paper, we proposed the new algorithm which can get the optimal ratio of sharing resources. We will implement the proposed algorithm to semiconductor production systems. We introduce the optimal algorithm, which is modeled and analyzed by ExSpect, a petri net based simulation tool. When there exist conflicts of sharing resources, the scheduling method is adopted, which gives a priority to the most preceded process. The suggested algorithm can be used not only in semiconductor production systems but also in various FMS.

  • PDF

A Study on Threshold Voltage and I-V Characteristics by considering the Short-Channel Effect of SOI MOSFET (SOI MOSFET의 단채널 효과를 고려한 문턱전압과 I-V특성 연구)

  • 김현철;나준호;김철성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.34-45
    • /
    • 1994
  • We studied threshold voltages and I-V characteristics. considering short channel effect of the fully depleted thin film n-channel SOI MOSFET. We presented a charge sharing model when the back surface of short channel shows accumulation depletion and inversion state respectively. A degree of charge sharing can be compared according to each of back-surface conditions. Mobility is not assumed as constant and besides bulk mobility both the mobility defined by acoustic phonon scattering and the mobility by surface roughness scattering are taken into consideration. I-V characteristics is then implemented by the mobility including vertical and parallel electric field. kThe validity of the model is proved with the 2-dimensional device simulation (MEDICI) and experimental results. The threshold voltage and charge sharing region controlled by source or drain reduced with increasing back gate voltage. The mobility is dependent upon scattering effect and electric field. so it has a strong influence on I-V characteristics.

  • PDF

Coordination between Voltage-Limiting Surge Protective Devices in Surge Currents Caused by Direct Lightning Flashes

  • Shin, Hee-Kyung;Lee, Jae-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.116-125
    • /
    • 2015
  • This paper presents experimental results obtained from actual installation conditions of surge protective devices (SPDs), with the aim of understanding the coordination of cascaded Class I and Class II SPDs. This paper also proposes effective methods for selecting and installing coordinating cascaded SPDs. The residual voltage of each SPD and the energy sharing of an upstream Class I tested SPD and a downstream Class II tested SPD were measured using a $10/350{\mu}s$ current wave. In coordinating a cascaded voltage-limiting SPD system, it was found that energy coordination can be achieved as long as the downstream SPD is a metal oxide varistor with a higher maximum continuous operating voltage than the upstream SPD; however, it is not the optimal condition for the voltage protection level. If the varistor voltage of the downstream SPD is equal to or lower than that of the upstream SPD, the precise voltage protection level is obtained. However, this may cause serious problems with regard to energy sharing. The coordination for energy sharing and voltage protection level is fairly achieved when the cascaded SPD system consists of two voltage-limiting SPDs separated by 3 m and with the same varistor voltage.

Protection Characteristics of Two-Stage Cascade SPD Systems (2단 종속 SPD시스템의 보호특성)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.95-103
    • /
    • 2013
  • Protection of the electrical and electronic equipment against surges in low voltage AC power distribution systems is based on wide applications of surge protective devices(SPDs). Cascade application of SPDs located at the service entrance of a building and near sensitive equipment is intended to ensure the optimal voltage protection level and energy sharing among cascade SPDs. In this paper, when surges impinge at the service entrance of the building of interest, the protection characteristics of two-stage cascade SPD systems were investigated. The influence of the distance between the upstream and downstream SPDs on the voltage protection level and energy sharing of the two-stage cascade SPD systems were analyzed experimentally. It was found that the energy sharing of two-stage cascade SPD systems strongly depends on the distance between the two SPDs and the component of SPD. As the distance between the two SPDs increases, the energy absorbed by the upstream SPD increases while the energy absorbed by the downstream SPD decreases. Consequently, it is desirable to select the upstream and downstream SPDs having the proper energy capability with due consideration of the distance between the two SPDs.

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.