• Title/Summary/Keyword: Device Constant information

Search Result 131, Processing Time 0.024 seconds

Analysis on the Scaling of MOSFET using TCAD (TCAD를 이용한 MOSFET의 Scaling에 대한 특성 분석)

  • 장광균;심성택;정정수;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.442-446
    • /
    • 2000
  • The metal-oxide-semiconductor field-effect transistor(MOSFET) has undergone many changes in the last decade in response to the constant demand for increased speed, decreased power, and increased parking density. Therefore, it was interested in scaling theory, and full-band Monte Carlo device simulator has been used to study the effects of device scaling on hot carriers in different MOSFET structures. MOSFET structures investigated in this study include a conventional MOSFET with a single source/drain, implant a lightly-doped drain(LDD) MOSFET, and a MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane, and those are analyzed using TCAD(Technology Computer Aided Design) for scaling and simulation. The scaling has used a constant-voltage scaling method, and we have presented MOSFET´s characteristics such as I-V characteristic, impact ionization, electric field and recognized usefulness of TCAD, providing a physical basis for understanding how they relate to scaling.

  • PDF

Theoretical and Experimental Analysis of Back-Gated SOI MOSFETs and Back-Floating NVRAMs

  • Avci, Uygar;Kumar, Arvind;Tiwari, Sandip
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • Back-gated silicon-on-insulator MOSFET -a threshold-voltage adjustable device-employs a constant back-gate potential to terminate source-drain electric fields and to provide carrier confinement in the channel. This suppresses shortchannel effects of nano-scale and of high drain biases, while allowing a means to threshold voltage control. We report here a theoretical analysis of this geometry to identify its natural length scales, and correlate the theoretical results with experimental device measurements. We also analyze experimental electrical characteristics for misaligned back-gate geometries to evaluate the influence on transport behavior from the device electrostatics due to the structure and position of the back-gate. The backgate structure also operates as a floating-gate nonvolatile memory (NVRAM) when the back-gate is floating. We summarize experimental and theoretical results that show the nano-scale scaling advantages of this structure over the traditional front floating-gate NVRAM.

Optimization of Gate Stack MOSFETs with Quantization Effects

  • Mangla, Tina;Sehgal, Amit;Saxena, Manoj;Haldar, Subhasis;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.228-239
    • /
    • 2004
  • In this paper, an analytical model accounting for the quantum effects in MOSFETs has been developed to study the behaviour of $high-{\kappa}$ dielectrics and to calculate the threshold voltage of the device considering two dielectrics gate stack. The effect of variation in gate stack thickness and permittivity on surface potential, inversion layer charge density, threshold voltage, and $I_D-V_D$ characteristics have also been studied. This work aims at presenting a relation between the physical gate dielectric thickness, dielectric constant and substrate doping concentration to achieve targeted threshold voltage, together with minimizing the effect of gate tunneling current. The results so obtained are compared with the available simulated data and the other models available in the literature and show good agreement.

Frequency Dependent Properties of Tris(8-Hydroxyquinoline) Aluminum Thin Films

  • Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.70-74
    • /
    • 2001
  • Admittance or impedance spectroscopy is one of the powerful tools to study dielectric relaxation and loss processes in organic and inorganic materials. In this study, the frequency dependent properties of an indium tin oxide/tris(8-hydroxyquinoline) aluminum($Alq_3$)/aluminum structure have been studied. The conductance of the $Alq_3$ film increases with the DC applied voltage up to 4V and decreases above 4V in the low frequency region. This indicates that the resistance of the device decreases with the applied bias due to the carrier injection enhancement, thereafter the injected carriers form the space charge and the additional injection of carriers is prevented. The Cole-Cole plot of the admittance takes a one-semicircle shape, which means that the device can be modeled as a parallel resistor-capacitor network. The resistance and capacitance were estimated as 8.62k${\Omega}$ and 2.7nF, respectively, at 3V in the low frequency region. The dielectric constant ( ${\epsilon}'$ ) of the $Alq_3$ film is independent of the frequency in the low frequency region below 100kHz, while the frequency dependency was observed at above 100kHz. The dielectric loss factor ( ${\epsilon}"$ ) of the $Alq_3$ film shows the dielectric dispersion below 100kHz and dielectric absorption in higher frequency domain. The dispersion is thought to be related to the hopping process of the carriers. The ${\epsilon}"$ is proportional to the reciprocal of the frequency. The dielectric relaxation time was extracted to about 0.318${\mu}s$ from the dielectric absorption spectrum.

  • PDF

RF Energy Harvesting and Charging Circuits for Low Power Mobile Devices

  • Ahn, Chang-Jun;Kamio, Takeshi;Fujisaka, Hisato;Haeiwa, Kazuhisa
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.221-225
    • /
    • 2014
  • Low power RF devices, such as RFID and Zigbee, are important for ubiquitous sensing. These devices, however, are powered by portable energy sources, such as batteries, which limits their use. To mitigate this problem, this study developed RF energy harvesting with W-CDMA for a low power RF device. Diodes are required with a low turn on voltage because the diode threshold is larger than the received peak voltage of the rectifying antenna (rectenna). Therefore, a Schottky diode HSMS-286 was used. A prototype of RF energy harvesting device showed the maximum gain of 5.8dBi for the W-CDMA signal. The 16 patch antennas were manufactured with a 10 dielectric constant PTFT board. In low power RF devices, the transmitter requires a step-up voltage of 2.5~5V with up to 35 mA. To meet this requirement, the Texas Instruments TPS61220 was used as a low input voltage step-up converter. From the evaluated result, the achievable incident power of the rectenna at 926mV to operate Zigbee can be obtained within a distance of 12m.

Development of an Active Gait Assistive Device with Haptic Information (햅틱 연동 능동 보행보조장치 개발)

  • Pyo, Sang-Hun;Oh, Min-Kyun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • The purpose of this research is to develop a gait assistive device to enhance the gait stability and training efficiency of stroke patients. The configuration of this device is mainly composed of a motored wheel and a single cane whose lower end is attached to a motored wheel frame. A patient can feel haptic information from continuous ground contact from the wheel while walking through the grip handle. In addition, the wheeled cane can avoid using excessive use of the patient's upper limb for weight support and motivate the patient to use a paralyzed lower limb more actively. Moreover, the proposed device can provide intuitive and safe user interaction by integrating a force sensor and a tilt sensor equipped to the cane frame, and a switch sensor at the cane's handle. The admittance control has been implemented for the patient to change the walking speed intuitively by using the interaction forces at the handle. A hemi-paretic stroke patient participated in the walking assistive experiments as a pilot study to verify the effectiveness of the proposed haptic cane system. The results showed that the patient could improve walking speed and muscle activations during walking with a constant speed mode of the haptic cane. Moreover, the patient could maintain the preferred walking speeds and gait stability regardless of the magnitude of resistance forces with the admittance control mode of the haptic cane. The proposed robotic gait assistive device with a simple and intuitive mechanism can provide efficient gait training modes to stroke patients with high possibilities of widespread utilizations.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Anisotropic stress Effects in p-n junction (p-n 접합에 있어서의 비등방성 응력효과)

  • 손병기;이건일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.3
    • /
    • pp.22-26
    • /
    • 1974
  • The effects of anisotropic mechanical stress applied normal to the surface of p-n junctions have been investigated. As the stress increased, the breakdown voltage was decreased and the breakdown mode became softer. Within a certain limitation in the applied stress, the above phenomena werw reversibbe, though relaxation and hysteresis phenomena were observed. The time constant of relaxation depended upon the shape of the stressing tip, but for the given tip and device a unique time constant was obtained. The stress.dependence of breakdown voltage showed a good linearity up to about 3.0${\times}10^4$ kgw/$\textrm{cm}^2$, when the flat tip of radius 15$\mu$ was used, and the temperatere-dependence of breakdown voltage under the stress also showed a good linearity in the temperature range of 100 to $300^{\circ}K$.

  • PDF

Fabrications and properties of MFIS structure using AIN buffer layer (AIN 버퍼층을 사용한 MFIS 구조의 제작 및 특성)

  • 정순원;김용성;이남열;김진규;정상현;김광호;유병곤;이원재;유인규
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.29-32
    • /
    • 2000
  • Meta1-ferroelectric-insulator-semiconductor(MFIS) devices using Pt/LiNbO$_{3}$/AIN/Si structure were successfully fabricated. AIN thin films were made into metal-insulator-semiconductor(MIS) devices by evaporating aluminum in a dot array on the film surface. The dielectric constant of the AIN film calculated from the capacitance in the accumulation region in the capacitance-voltage(C-V ) characteristic is 8. The gate leakage current density of MIS devices using a aluminum electrode showed the least value of 1$\times$10$^{-8A}$ $\textrm{cm}^2$ order at the electric field of 500㎸/cm. A typica] value of the dielectric constant of MFIS device was about 23 derived from 1MHz capacitance-voltage (C-V) measurement and the resistivity of the film at the field of 500㎸/cm was about 5.6$\times$ 10$^{13}$ $\Omega$.cmcm

  • PDF

Research on the Variable Rate Spraying System Based on Canopy Volume Measurement

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1131-1140
    • /
    • 2019
  • Characteristics of fruit tree canopies are important target information for adjusting the pesticide application rate in variable rate spraying in orchards. Therefore, the target detection of the canopy characteristics is very important. In this study, a canopy volume measurement method for peach trees was presented and a variable rate spraying system based on canopy volume measurement was developed using the ultrasonic sensing, one of the most effective target detection method. Ten ultrasonic sensors and two flow control units were mounted on the orchard air-assisted sprayer. The ultrasonic sensors were used to detect the canopy diameters and the flow controls were used to modify the flow rate of the nozzles in real time. Two treatments were established: a constant application rate of $300Lha^{-1}$ was set as the control treatment for the comparison with the variable rate application at a $0.095Lm^{-3}$ canopy. The tracer deposition at different parts of peach trees and the tracer losses to the ground (between rows and within rows) were analyzed in detail under constant rate and variable rate application. The results showed that there were no significant differences between two treatments in the liquid distribution and the capability to reach the inner parts of the crop canopies.