• Title/Summary/Keyword: Developmental Processes

Search Result 308, Processing Time 0.026 seconds

PVDF Nanofiber Scaffold Coated with a Vitronectin Peptide Facilitates the Neural Differentiation of Human Embryonic Stem Cells

  • Jeon, Byeong-Min;Yeon, Gyu-Bum;Goo, Hui-Gwan;Lee, Kyung Eun;Kim, Dae-Sung
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.135-147
    • /
    • 2020
  • Polyvinylidene fluoride (PVDF) is a stable and biocompatible material that has been broadly used in biomedical applications. Due to its piezoelectric property, the electrospun nanofiber of PVDF has been used to culture electroactive cells, such as osteocytes and cardiomyocytes. Here, taking advantage of the piezoelectric property of PVDF, we have fabricated a PVDF nanofiber scaffolds using an electrospinning technique for differentiating human embryonic stem cells (hESCs) into neural precursors (NPs). Surface coating with a peptide derived from vitronectin enables hESCs to firmly adhere onto the nanofiber scaffolds and differentiate into NPs under dual-SMAD inhibition. Our nanofiber scaffolds supported the differentiation of hESCs into SOX1-positive NPs more significantly than Matrigel. The NPs generated on the nanofiber scaffolds could give rise to neurons, astrocytes, and oligodendrocyte precursors. Furthermore, comparative transcriptome analysis revealed the variable expressions of 27 genes in the nanofiber scaffold groups, several of which are highly related to the biological processes required for neural differentiation. These results suggest that a PVDF nanofiber scaffold coated with a vitronectin peptide can serve as a highly efficient and defined culture platform for the neural differentiation of hESCs.

Analysis of Decorin Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Choi, Yo-Han;Seo, Hee-Won;Kim, Min-Goo;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.95-101
    • /
    • 2010
  • Decorin (DCN) is a member of small leucine-rich proteoglycans which are ubiquitous components of the extracellular matrix. It regulates many physiological processes, such as matrix formation, collagen fibrillogenesis, angiogenesis, cancer growth, and cardiovascular diseases. It has been shown that DCN is expressed in the uterus during pregnancy and modulates implantation and decidualization for the establishment and maintenance of pregnancy in mice and humans. Expression of DCN in the uterine endometrium during pregnancy has not been investigated in pigs. Thus, this study investigated expression of DCN in the uterine endometrium during the estrous cycle and pregnancy in pigs. Uterine endometrial tissues were from day (D) 12 and 15 of the estrous cycle and D12, D15, D30, D60, D90, and D114 of pregnancy. Northern blot and real-time RT-PCR analyses showed that expression of DCN mRNA was detected throughout the estrous cycle and pregnancy with the highest levels during mid pregnancy. In situ hybridization analysis showed that DCN mRNA was localized to both luminal and glandular epithelia during the estrous cycle and pregnancy and also to chorionic membrane during mid pregnancy in pigs. To determine whether endometrial expression of DCN was affected by the somatic cell nuclear transfer (SCNT) procedure, DCN mRNA levels in the uterine endometrium from gilts with SCNT embryos on D30 of pregnancy were compared with those from gilts with normal embryos using real-time RT-PCR analysis. The result showed that DCN mRNA levels in the uterine endometrium were not significantly different between gilts with normal embryos and SCNT embryos. These results suggest that DCN may play an important role for endometrial tissue remodeling during mid pregnancy, and DCN expression is not affected by the SCNT procedure at the early stage of pregnancy in pigs.

NELL2 Function in Axon Development of Hippocampal Neurons

  • Kim, Han Rae;Kim, Dong Hee;An, Ji Young;Kang, Dasol;Park, Jeong Woo;Hwang, Eun Mi;Seo, Eun Jin;Jang, Il Ho;Ha, Chang Man;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.581-589
    • /
    • 2020
  • Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.

OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor

  • Kim, Gwang Sik;Park, Hee-Sae;Lee, Young Chul
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.842-852
    • /
    • 2018
  • Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to ${\beta}-trefoil$ domain (BTD) of CSL using a conserved ${\varphi}W{\varphi}P$ motif (${\varphi}$ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ${\varphi}W{\varphi}P$ sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.

Seeing the State-nature Relation in South Korea from the Perspective of Political Ecology (한국의 국가와 자연의 관계에 대한 정치생태학적 연구를 위한 시론)

  • Hwang, Jin-Tae;Park, Bae-Gyoon
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.3
    • /
    • pp.348-365
    • /
    • 2013
  • This paper aims to examine the complexities of the state-nature relations in Korea by emphasizing the complex processes of interactions between the state and nature. In doing so, it relies on the literature of "political ecology of state-nature" which problematizes the conventional modernist views on nature assuming the dualistic separation between the state and nature. First, we critically review the existing Korean literature on the state-nature relation (e.g., the ecologism, the metabolic rift theory, the social construction of the nature, the green state thesis, etc.) and argue that these studies significantly lack the recognition of the interactions between the state and nature. Second, we discuss the possibilities of seeing the state-nature relations from the perspective of political ecology as an alternative approach to the state-nature relation. Last, we conclude that the political ecology approach to the state-nature can deepen our understandings of the Korean capitalist development.

  • PDF

Ultrastructural Studies on Oocyte Development and Vitellogenesis in Oocytes During Oogenesis in Female Pampus echinogaster in western Korea (한국 서해산 암컷 덕대 Pampus echinogaster (Basilewsky)의 난형성과정 중 난모세포 발달과 난모세포 내에서의 난황형성과정에 관한 미세구조적 연구)

  • KIM, Sung-Han
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1231-1243
    • /
    • 2016
  • The ultrastructural study on oocyt development and the process of vitellogensis in the oocytes during oogenesis in female Pampus echinogaster were investigated by electron microscope observations. In the previtellogenic phase, in particular, several intermitochondrial cements appear in the cytoplasms of the chromatin nucleleolus oocyte and perinuclear oocyte. The number of intermitochondrial cements are associated with the multiplication of the number of mitochondria in the early developmental stage. In the early vitellogenic phase, the Golgi complex in the cytoplasm of the yolk vesicle oocyte is involved in the formation of yolk vesicles containing carbohydrate yolks. At this time, many pinocytotic vesicles containing yolk precursors (exogenous substances) by pinocytosis are observed in the cytoplasm near the region of initial formation of the zona pellucida. In the late vitellogenic phase, two morphological different bodies, which formed by the modified mitochondria, appeared remarkably in the yolked oocytes. The one is the multivesicular bodies and another is yolk precursors. The multivesicular bodies were transformed into the primary yolk globules, while yolk precursors were connected with exogeneous pinocytotic vesicles near the zona pellucida. After the pinocytotic vesicles were taken into yolk precursors, the yolk precursors were transformed into the primary yolk globules. Thereafter, primary yolk globules mixed with each other, eventually, they developed into secondary and tertiary yolk globules. In this study, vitellogenesis of this species occurred by way of endogenous autosynthesis and exogenous heteogenesis. Vitellogenesis occurred through the processes of endogeneous autosynthesis, involving the combined activity of the Golgi complex, mitochondria and multivesicular bodies formed by modified mitochondria. However, the process of heterosynthesis involved pinocytotic incorporation of extraovarian precursors (such as vitellogenin in the liver) into the zona pellucida (by way of granulosa cells and thecal cells) of vitellogenic oocytes.

The Development and the Effects of Verbalization on Representational Redescription in Children's Drawings (아동의 그림 표상 발달과정 및 언어화를 통한 표상의 촉진)

  • Park, Hee Sook
    • Korean Journal of Child Studies
    • /
    • v.34 no.6
    • /
    • pp.139-158
    • /
    • 2013
  • Karmiloff-Smith was first to propose the 'Representational Redescription model'. It describes a process through which children elaborate their knowledge from the unconscious and implicit levels to the conscious and explicit levels. The model also assumes that children in perfectly explicit levels are able to express their own representation of knowledge verbally. This study was conducted to investigate Karmiloff-Smith's Representational Redescription(RR) model(1990, 1992, 1999) within the drawing domain. Additionally, how verbalization training influences children's development of representational redescription in drawing were also examined. First, 331 children (4- to 6-year-olds and an older comparison group of 7- to 9-year-olds) were asked to create six drawings of both familiar and novel topics. From these drawings, children were measured for procedural rigidity and developmental differences. Thereafter 80 5-year-olds children who were not able to manipulate their drawings with flexibility were selected. They were divided into an experimental group and two control groups. A group of verbalization training was given a session using 5 tasks. Compared to the control groups, children who practiced verbalization in the training group showed more advanced levels of representation than their previous levels in the pretest. The results were interpreted as meaning that verbalization is likely to facilitate children's reorganization of implicit knowledge within the drawing domain and to transfer this toward explicit forms. Further research needs to pay more attention to the educational applications of learning processes based on representational redescription.

A Dialectical Perspective of Korean Food Culture Through Korean Literature (한국 식생활 문화의 변증법적 관계 - 한국 문학작품을 중심으로 -)

  • Kim, Yeong-Soo;Cho, Yoon-Jun;Moon, Sung-Won
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.4
    • /
    • pp.329-338
    • /
    • 2013
  • Korean culinary culture is traditionally studied through the analysis of foods ingested. However, this study attempts to dialectically reinterpret Korean culinary culture through its relationship to Korean literature. In our study we consider culinary culture prior to the development of scientific techniques and economic growth related to food as "dietary lifestyle of the innocent world" and time since then as "the dietary lifestyle of the experience world". The former represents a simple means of survival without food processing (the "slow food" world), while the latter represents the "fast food" or processed food culture as a modern concept. People living in the age of economic growth and overflowing individualism have lacked an organic life and an opportunity to commune with nature. As a result, they have returned to values of the past, seeking the "slow food" culture to benefit their individual health. A series of return processes, however, were transformed into "the dietary life style of the higher innocence," called "a well-being dietary life style" involving a new healthy conception passing through the dietary life style of the experience world. Therefore, the purpose of this study is to investigate the dietary lifestyles of the "innocent" world and the "experience" world based on dialectic concepts. Individual concepts of "thesis" and "antithesis" are applied, as well as the developmental concept of "synthesis" for the way both symbolic worlds changed to "the dietary lifestyle of the higher innocence" and formed complementary relationships to each other.

Responses of HSP Gene Expressions to Elevated Water Temperature in the Nile tilapia Oreochromis niloticus

  • Kwon, Joon-Yeong;Kim, Ju-Yeong
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • Water temperature influences on various key biological events in fish, but the internal pathway of the temperature effects are not well understood. Heat shock proteins (HSPs), known to respond in the level of cells to many environmental factors including temperature, could improve our understanding on the pathway. Some biological processes such as gonadal development and sex differentiation in the Nile tilapia Oreochromis niloticus is particularly sensitive to water temperature. In this study, we have investigated the expressions of HSP70 and HSP90 genes in young tilapia at an ordinary temperature ($28^{\circ}C$) and elevated water temperature ($36^{\circ}C$). The distribution of the expressions of HSP70 and HSP90 mRNA in this species were found to be almost ubiquitous, being detected in all tissues studied here (brain, gonad, liver and muscle), suggesting the house keeping functions of these genes. Heat shock by elevating temperature from $28^{\circ}C$ to $36^{\circ}C$ significantly increased the expression of HSP70 mRNA in the gonad, liver and muscle for several hours (P<0.05) (brain tissue was not examined for this). The increased level of HSP70 gene expression recovered to the level at control temperature ($28^{\circ}C$) when fish were kept continuously at high temperature ($36^{\circ}C$) for 24 hours. Contrary to this, expression of HSP90 mRNA did not show significant increase in the gonad and muscle by the same heat shock (P>0.05), except in the liver where the expression of HSP90 mRNA increased continuously for 24 hours at $36^{\circ}C$. The results obtained in this study suggest that response to temperature change in different tissue or organ may utilize different heat shock proteins, and that HSP70 may have some importance in temperature-sensitive gonadal event in the Nile tilapia.

Canine Mesenchymal Stem Cells Derived from Bone Marrow: Isolation, Characterization, Multidifferentiation, and Neurotrophic Factor Expression in vitro

  • Jung, Dong-In;Ha, Jeong-Im;Kim, Ju-Won;Kang, Byeong-Teck;Yoo, Jong-Hyun;Park, Chul;Lee, Jong-Hwan;Park, Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.25 no.6
    • /
    • pp.458-465
    • /
    • 2008
  • The purpose of this study is to characterize canine mesenchymal stem cells (MSCs) derived from bone marrow (BM) for use in research on the applications of stem cells in canine models of development, physiology, and disease. BM was harvested antemortem by aspiration from the greater tubercle of the humerus of 30 normal beagle dogs. Canine BM-derived MSCs were isolated according to methods developed for other species and were characterized based on their morphology, growth traits, cell-surface antigen profiles, differentiation repertoire, immunocytochemistry results, and neurotrophic factor expression in vitro. The canine MSCs exhibited a fibroblast-like morphology with a polygonal or spindle-shaped appearance and long processes; further, their cell-surface antigen profiles were similar to those of their counterparts in other species such as rodents and humans. The canine MSCs could differentiate into osteocytes and neurons on incubation with appropriate induction media. RT-PCR analysis revealed that these cells expressed NGF, bFGF, SDF-1, and VEGF. This study demonstrated that isolating canine MSCs from BM, stem-cell technology can be applied to a large variety of organ dysfunctions caused by degenerative diseases and injuries in dogs. Furthermore, our results indicated that canine MSCs constitutively secrete endogenous factors that enhance neurogenesis and angiogenesis. Therefore, these cells are potentially useful for treating dogs affected with various neurodegenerative diseases and spinal-cord injuries.