• Title/Summary/Keyword: Developing Measurement

Search Result 995, Processing Time 0.043 seconds

Advancing the Gauge Block Interferometer and Automating the Gauge Block Calibration (게이지 블록 간섭계의 선진화 및 완전 자동화)

  • Kang Chu-Shik;Kim Jae-Wan;Suh Ho-Suhng;Lee Won-Kyu;Kim Jong-Ahn
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.547-550
    • /
    • 2005
  • Gauge blocks are the most widely used material measure in length field in industry. The gauge block interferometer, which is the gauge block measuring system, comprises Twyman-Green type interferometer optics and light sources having precisely known wavelengths. This paper describes the work done for advancing the measurement system and automating the measurement process. The advancing of the system was done mainly by exchanging the spectral lamp with the frequency stabilized lasers, and the automation of measurement was achieved by modifying the hardware and developing the automatic measuring software. As the results of this work, the contrast of interferometric fringes of gauge blocks longer than 100 mm s enhanced about 20 times, and the measurement time has reduced down to 50% by automation.

  • PDF

A MEMS/NEMS sensor for human skin temperature measurement

  • Leng, Hongjie;Lin, Yingzi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2011
  • Human state in human-machine systems highly affects the overall system performance, and should be detected and monitored. Physiological cues are essential indicators of human state and useful for the purpose of monitoring. The study presented in this paper was focused on developing a bio-inspired sensing system, i.e., Nano-Skin, to non-intrusively measure physiological cues on human-machine contact surfaces to detect human state. The paper is presented in three parts. The first part is to analyze the relationship between human state and physiological cues, and to introduce the conceptual design of Nano-Skin. Generally, heart rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and electromyography are closely related with human state. They can be measured through human-machine contact surfaces using Nano-Skin. The second part is to discuss the technologies for skin temperature measurement. The third part is to introduce the design and manufacture of the Nano-Skin for skin temperature measurement. Experiments were performed to verify the performance of the Nano-Skin in temperature measurement. Overall, the study concludes that Nano-Skin is a promising product for measuring physiological cues on human-machine contact surfaces to detect human state.

R&D performance measurement model - Quantitative value measurement of technology and Its capitalization - (연구개발투자의 성과측정 모형 - 기술의 정량적 가치추정과 자산화 방안 -)

  • 조현춘;박상덕
    • Proceedings of the Technology Innovation Conference
    • /
    • 1999.12a
    • /
    • pp.159-177
    • /
    • 1999
  • Many companies still struggle with the issue of research and development(R&D) performance measurement, in particular, the nonfinancial performance measurement of R&D with coming of knowledge-based society, Of course, we would not deny the fact that financial measures play the central role in assessing the overall performance of R&D, The aim of this paper is to provide the new model to evaluate the quantitative value of technology (nonfinancial benefits). This new model is based on the technology stock(technology level) acquired in R&D process, That is, we take it for granted that the acquired technology below a certain level(<70% compare to the advanced country) can not be utilized in developing the new products or in proving the manufacturing processes, The evaluation model we create can explains the quantitative relation between the technology stock and the market value considering R&D expenditure to acquire the technology above certain level(>70%) and cost to prevent the technology obsolescence. The value of non-destructive testing technology, which is one of the electric Power technology, is measured quantitatively using our new model as a case study, We also discussed briefly the possibility of capitalization of the measured technology value.

  • PDF

A Study on the Evaluation Items of BIM Process Maturity Measurement Model (BIM 프로세스 성숙도 측정 모델의 평가항목에 대한 연구)

  • Lee, Jae-sung;Ock, Jong-ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.281-295
    • /
    • 2016
  • Lately, the management of domestic BIM performance is quite lacking, as the evaluation and management data from successful cases of BIM implementation both on projects and in companies, and related effects (time, cost and other physical gains) are not well kept for future use in BIM development. In order to overcome the above obstacles, a systematic approach to evaluating BIM adoption with focus on particular elements like BIM implementation environment and processes, and the physical factors yielded by BIM, is necessary. In this study, objective and detailed assessment indicators and weights that are appropriate for the domestic situation were derived through research for purposes of developing a web-based BIM maturity measurement program that is tailor-made for the Korean construction atmosphere. Through a company's self-maturity measurement, excellent quality of BIM deliverables and output can be achieved and managed. Furthermore, the domestic BIM capacity can gradually increase since design firms' BIM capability can be judged during procurement basing on measurement indicators.

A Study on Development of a Prediction Model for the Sound Pressure Level Related to Vehicle Velocity by Measuring NCPX Measurement (NCPX 계측 방법에 따른 속도별 소음 데시벨 예측 모델 개발에 대한 연구)

  • Kim, Do Wan;An, Deok Soon;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES : The objective of this study is to provide for the overall SPL (Sound Pressure Level) prediction model by using the NCPX (Noble Close Proximity) measurement method in terms of regression equations. METHODS: Many methods can be used to measure the traffic noise. However, NCPX measurement can powerfully measure the friction noise originated somewhere between tire and pavement by attaching the microphone at the proximity location of tire. The overall SPL(Sound Pressure Level) calculated by NCPX method depends on the vehicle speed, and the basic equation form of the prediction model for overall SPL was used, according to the previous studies (Bloemhof, 1986; Cho and Mun, 2008a; Cho and Mun, 2008b; Cho and Mun, 2008c). RESULTS : After developing the prediction model, the prediction model was verified by the correlation analysis and RMSE (Root Mean Squared Error). Furthermore, the correlation was resulted in good agreement. CONCLUSIONS: If the polynomial overall SPL prediction model can be used, the special cautions are required in terms of considering the interpolation points between vehicle speeds as well as overall SPLs.

Developing a Scale to Measure Brand Image Attributes of Fashion Brands -Focused on Attribute Symbolism- (패션 브랜드의 브랜드 이미지 측정 도구 개발 -속성 상징성을 중심으로-)

  • Shim, Soo In;Lee, Yuri
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.977-993
    • /
    • 2017
  • In this study, we develop a scale to measure brand image attributes related to the symbolic use of fashion brands, and then, test the validity and reliability of the scale. In Study 1, a comprehensive literature review was conducted to generate the initial set of measurement items. Nominal Group Technique was subsequently conducted to refine the measurement items in a qualitative way. In Study 2, an expert survey was performed to further refine the measurement items in a quantitative way. In Study 3, a consumer survey was performed to determine the final set of measurement items and validate it. The scale of brand attribute symbolism consists of 21 items with six factors (i.e., Strength, Intellect, Cheerfulness, Traditional Femininity, Nature, and Affordability). The six-factor, 21-item scale is found valid and reliable. Implications, limitations of this study, and suggestions for future research are also discussed.

Development of Elimination Method of Measurement noise to Improve accuracy for White Light Interferometry (백색광 간섭계의 정밀도 향상을 위한 노이즈 제거 방법)

  • Ko, Kuk-Won;Cho, Soo-Yong;Kim, Min-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.519-522
    • /
    • 2008
  • As industry of a semiconductor and LCD industry have been rapidly growing, precision technologies of machining such as etching and 3D measurement are required. Stylus has been important measuring method in traditional manufacturing process. However, its disadvantages are low measuring speed and damage possibility at contacting point. To overcome mentioned disadvantage, non-contacting measurement method is needed such as PMP(Phase Measuring Profilometry), WSI(white scanning interferometer) and Confocal Profilometry. Among above 3 well-known methods, WSI started to be applied to FPD(flat panel display) manufacturing process. Even though it overcomes 21t ambiguity of PMP method and can measure objects which has specular surface, the measuring speed and vibration coming from manufacturing machine are one of main issue to apply full automatic total inspection. In this study, We develop high speed WSI system and algorithm to reduce unknown noise. The developing WSI and algorithm are implemented to measure 3D surface of wafer. Experimental results revealed that the proposed system and algorithm are able to measure 3D surface profile of wafer with a good precision and high speed.

A Study for the Measurement of Global Loads on Ship Structure Using Fiber Optic Sensors (광섬유 센서를 이용한 선체 구조의 Global 하중 추정에 관한 연구)

  • Kim, Myung-Hyun;Kim, Young-Jae;Kang, Sung-Won;Oh, Min-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • Ships and offshore structures are exposed to wave and engine excitation loadings during navigation and cargo/ballasting operations. These excessive loads may cause damages to hull and may result loss of life the ship. Therefore, it is important to develop a system that allow accurate measurements of global hull loads. The objective of the study is developing a fiber optic monitoring system that is capable of monitoring, recording and warning of the vessel performance. A method for measurement of global loads on a vessel, using strain measurements from a network of fiber optic strain sensors and extensive finite-element analyses(FEA) with idealistic load cases, is presented. The method has been successfully validated on the idealized ship structure model with strain sensors.

Measuring Knowledge Management performance of the construction organization (건설조직의 지식경영 성과측정)

  • Kwon, Soon-Seok;Park, Moon-Seo;Lee, Hyun-Soo;Ahn, Chang-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.868-871
    • /
    • 2007
  • The current economy is summarized by increasing business competitiveness and leaner organizations, and the risk and uncertainties inherent in such dynamic environments have increased the importance of managing organizational knowledge. Like the preceding, the construction industry is required to make an effort for survival and takeoff, and most construction companies recognize that knowledge management improves efficiency and effectiveness and the necessity on the innovation of business itself and it is the current of the times. But at this point in time, companies have doubts about performance following the introduction of KM, and set to show interest in developing a measurement method. So, This study analyzes the existing model for performance measurement and based on results derived, presents the method for performance measurement.

  • PDF

Development of Modeling Method of Hysteretic Characteristics for Accurate Load Measurement of Trucks (상용차량의 정확한 하중 측정을 위한 겹판스프링의 이력특성 모델링 기법 개발)

  • Seo, M.K.;Batbayar, E.;Shin, H.Y.;Lee, H.Y.;Ko, J.I.
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.38-45
    • /
    • 2021
  • In recent years, the demand for an onboard scale system which can directly monitor load distribution and overload of vehicles has increased. Depending on the suspension type of the vehicle, the onboard scale system could use different types of sensors, such as, angle sensors, pressure sensors, load cells, etc. In the case of a vehicle equipped with leaf spring suspension system, the load of the vehicle is measured by using the deflection or displacement of the leaf spring. Leaf springs have hysteresis characteristics that vary in displacement depending on the load state. These characteristics cause load measurement errors when moving or removing cargoes. Therefore, this study aimed at developing an onboard scale device for cargo vehicles equipped with leaf springs. A sectional modeling method which can reduce measurement errors caused by hysteresis characteristics was also proposed.