• Title/Summary/Keyword: Detumbling mode

Search Result 5, Processing Time 0.017 seconds

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

Preliminary Analysis on Characteristics of Attitude Control based on Operation Scenario of Small SAR Satellite Mission, S-STEP (초소형 SAR 위성 S-STEP의 임무 시나리오에 따른 자세 제어 성능 예비 분석)

  • Lee, Eunji;Park, Jinhan;Song, Sung-Chan;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-56
    • /
    • 2022
  • S-STEP is a small SAR satellite mission that monitors time-limited emergency targets and military anomalies in areas of interest, achieving the average revisit in less than 30 minutes by deploying a constellation of 32 satellites in low orbit at an altitude of 510 km. The mission operation mode of S-STEP is divided into normal mode, observation mode, communication mode, and orbit maintenance mode. Further,, the attitude control mode is subdivides into initial detumbling, sun pointing, target pointing, ground station pointing, and thrust direction maintenance. Based on the preliminary mission operational scenario and the satellite's characteristics, this study analyzed the attitude control performance during initial detumbling and observation modes. It verifies that each mode's attitude control accuracy requirements within the time allotted by the scenario of the S-STEP achieved.

Attitude Control System Design & Verification for CNUSAIL-1 with Solar/Drag Sail

  • Yoo, Yeona;Kim, Seungkeun;Suk, Jinyoung;Kim, Jongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.579-592
    • /
    • 2016
  • CNUSAIL-1, to be launched into low-earth orbit, is a cubesat-class satellite equipped with a $2m{\times}2m$ solar sail. One of CNUSAIL's missions is to deploy its solar sail system, thereby deorbiting the satellite, at the end of the satellite's life. This paper presents the design results of the attitude control system for CNUSAIL-1, which maintains the normal vector of the sail by a 3-axis active attitude stabilization approach. The normal vector can be aligned in two orientations: i) along the anti-nadir direction, which minimizes the aerodynamic drag during the nadir-pointing mode, or ii) along the satellite velocity vector, which maximizes the drag during the deorbiting mode. The attitude control system also includes a B-dot controller for detumbling and an eigen-axis maneuver algorithm. The actuators for the attitude control are magnetic torquers and reaction wheels. The feasibility and performance of the design are verified in high-fidelity nonlinear simulations.

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.