• 제목/요약/키워드: Detrusor smooth muscle

검색결과 10건 처리시간 0.021초

The Relaxing Effect of ${\alpha}$-Defensin 1 on the Adrenergic Responses of Rat Bladder

  • Lee, Shin-Young;Kim, Don-Kyu;Kim, Kyung-Do;Myung, Soon-Chul;Lee, Moo-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권3호
    • /
    • pp.143-147
    • /
    • 2011
  • Defensins, cysteine-rich cationic polypeptides released from neutrophils, are known to have powerful antimicrobial properties. In this study, we sacrificed 30 rats to investigate the effects of ${\alpha}$-defensin 1 on detrusor muscle contractions in isolated rat bladder. From the experiments we found relaxing effects of ${\alpha}$-defensin 1 on the contractions induced by phenylephrine (PE) but not by bethanechol (BCh) in the detrusor smooth muscles. To determine the mechanisms of the effects of ${\alpha}$-defensin 1, the changes of effects on PE-induced contraction by ${\alpha}$-defensin 1 pretreatment were observed after pretreatment of Rho kinase inhibitor (Y-27632), protein kinase C (PKC) inhibitor (Calphostin C), potent activator of PKC (PDBu; phorbol 12,13-dibutyrate), and NF-${\kappa}B$ inhibitors (PDTC; pyrrolidinedithiocarbamate and sulfasalazine). The contractile responses of PE ($10^{-9}{\sim}10^{-4}$ M) were significantly decreased in some concentrations of ${\alpha}$-defensin 1 ($5{\times}10^{-9}$ and $5{\times}10^{-8}$ M). When strips were pretreated with NF-kB inhibitors (PDTC and sulfasalazine; $10^{-7}{\sim}10^{-6}$ M), the relaxing responses by ${\alpha}$-defensin 1 pretreatment were disappeared. The present study demonstrated that ${\alpha}$-defensin 1 has relaxing effects on the contractions of rat detrusor muscles, through NF-${\kappa}B$ pathway. Further studies in vivo are required to clarify whether ${\alpha}$-defensin 1 might be clinically related with bladder dysfunction by inflammation process.

Mode of Inhibitory Action of Amitriptyline on Carbachol-Induced Contraction of Isolated Rabbit Detrusor Muscle

  • Gill, Won-Sik;Shin, Beong-Ho;Kim, Won-Jae;Jeong, Han-Seong
    • The Korean Journal of Physiology
    • /
    • 제26권2호
    • /
    • pp.137-141
    • /
    • 1992
  • The present study was aimed at elucidating the mode of inhibitory action of tricyclic antidepressants on the smooth muscle. Effects of amitriptyline on the isolated detrusor muscle strips of the urinary bladder of the rabbit were examined. The spontaneous rhythmic movement of the muscle preparation was frequently observed, which was decreased or abolished by addition of amitriptyline $(10^{-5}{\sim}10^{-3}\;M)$. The muscle preparation responded with contraction dose dependently to carbachol, of which dose response curve shifted to the right in the presence of either amitriptyline or atropine. However, amitriptyline produced a nonparallel shift, whereas atropine caused a parallel one. In calcium free medium, the contraction response to carbachol was markedly decreased, which was resumed by the addition of $CaCl_2$ (2.5mM), but not in the presence of either amitriptyline or nifedipine. KCI (60 mM) produced a potent contraction, which was abolished in the presence of amitriptyline or nifedipine. These results suggest that amitriptyline, unlike atropine, not only acts as a noncompetitive antagonist at cholinergic muscarine receptors but also inhibits Ca-influx through the muscle cell membrane.

  • PDF

Imipramine이 배뇨근 세포의 수축성에 미치는 직접작용 (Effect of Imipramine on the Contractility of Single Cells Isolated from Canine Detrusor)

  • 허찬욱;이광윤;김원준
    • Journal of Yeungnam Medical Science
    • /
    • 제11권2호
    • /
    • pp.293-302
    • /
    • 1994
  • 유뇨증의 치료제로서 널리 사용되고 있는 imipramine의 작용기전에 관한 학설이 여러가지가 있으나 그 중 콜린성수용체 봉쇄작용을 관찰하기 위한 방법으로 평활근 세포를 분리배양하여 단일세포에 대한 acetylcholine의 수축작용과 이에 대한 imipramine의 길항작용을 atropine의 그것과 비교해 보기로 하였다. 개의 방광을 적출하여 $0{\sim}4^{\circ}C$의 K-H 용액내에서 $2{\times}2mm$크기의 평활근 절편을 얻어 $36^{\circ}C$의 collagenase 용액에 넣고 95%/5% $O_2/CO_2$, 혼합산소 공급하에서 17~20분동안 배양하여 분리된 부유세포군을 5 ml test tubes에 나누어 담고 acetylcholine을 $10^{-14}M{\sim}10^{-9}M$의 농도로 첨가하였다. Acrolein 1%를 가하여 수축한 세포를 고정시킨 후, 위상차 현미경에 장착한 CCTV camera로 채취한 영상을 microscaler로 전송하고 monitor상에서 세포의 길이를 측정하였다. 분리된 세포들은 acetylcholine에 의해 5초 이내에 최대 수축을 보였으며 이후 120초까지 수축상태를 지속하였다. Atropine은 acetylcholine 유발 수축을 atropine $10^{-7}M$ 에서부터 농도의존적으로 억제하였으며, imipramine도 acetylcholine 유발수축을 atropine과 같은 경향으로 농도의존적으로 억제하였는데, imipramine $10^{-9}M$의 저농도에서도 유의한 억제를 보였다. 이상의 결과를 종합하면 본 실험에 사용된 조건하에서의 collagense를 이용한 세포 분리법은 단일세포를 대상으로 하는 실험을 위하여 가용한 방법이며, imipramine은 개의 방광평활근 단일세포에서 atropine보다 더 강력한 콜린성 수용체 봉쇄작용을 나타낸다고 생각되었다.

  • PDF

개의 적출방광 평활근에서 Imipramine과 $K^+$ 통로 봉쇄제와의 상호작용 (Interaction of Imipramine and $K^+$ Channel Blockers on Detrusor Muscle Strips Isolated from Canine Urinary Bladder)

  • 허준영;최은미;최형철;하정희;이광윤;김원준
    • 대한약리학회지
    • /
    • 제31권2호
    • /
    • pp.195-206
    • /
    • 1995
  • The study was undertaken to examine the possibility of the involvement of $K^+$ channels in the mechanism of relaxant-action of imipramine on the isolated canine detrusor muscle strips. Canine urinary bladder were isolated, and smooth muscle strips of 15 mm long and 2 mm wide from the mid-portion of anterior wall were made in the Tyrode solution of $0{\sim}4^{\circ}C$. The strips were prepared for isometric myography in Biancani's isolated muscle chamber containing 1 ml of Tyrode solution, which was maintained with pH 7.4 by aeration with $95%\;O_2/5%CO_2\;at\;37^{\circ}C$. RP 52891, a non-specific $K^+$ channel opener, concentration-dependently suppressed the spontaneous phasic contractions of the detrusor strips. Imipramine, a tricyclic antidepressant, also reduced the spontaneous contractions in a concentration-dependent manner. RP 52891 was more potent than imipramine(p<0.05), and Imipramine was more efficient than RP 52891(p<0.05).Procaine, a voltage-dependent $K^+$ channel blocker, glibenclamide, an ATP-dependent $K^+$ channel blocker, and apamin, a calcium-dependent $K^+$ channel blocker antagonized the relaxant effect of RP 52891, but not of imipramine. Imipramine reduced the electric field stimulation (EFS) -induced contractions concentration-dependently. None of the $K^+$ channel blockers employed for this study, procaine, glibenclamide or apamin antagonized the inhibitory action of imipramine on the EFS-induced contraction. These results suggest that in canine detrusor, the $K^+$ channels of the characteristics of voltage-dependent, ATP-dependent and/or calcium-dependent are exist, and the inhibitory action of imipramine on the contractility of the detrusor is independent from the $K^+$ channels.

  • PDF

Effect of Imipramine on Calcium Utilization of Single Cells Isolated from Canine Detrusor

  • Shim, Ho-Shik;Choi, Hyoung-Chul;Jeong, Young-Sook;Kim, Jong-Ho;Lee, Kwang-Youn;Sohn, Uy-Dong;Ha, Jeoung-Hee;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권4호
    • /
    • pp.439-445
    • /
    • 1999
  • This study is to investigate the mechanism of inhibitory effect of imipramine on the calcium utilization in single cells isolated from canine detrusor. 2 mm thick smooth muscle chops were incubated in 0.12% collagenase solution at $36^{circ}C,$ and aerated with 95% $O_2/5%\;CO_2,$ and then cell suspension was examined. Acetylcholine (ACh) evoked a concentration-dependent contraction of the isolated detrusor cells in normal physiologic salt solution (PSS), and the ACh-induced contraction was significantly inhibited by imipramine. In $Ca^{2+}-free$ PSS, ACh-induced contraction was less than those in normal PSS and it was not affected by the pretreatment with imipramine. $Ca^{2+}-induced$ contraction in $Ca^{2+}-free$ PSS was supressed by imipramine, but addition of A 23187, a calcium ionophore, overcomed the inhibitory effect of imipramine. High potassium-depolarization (40 mM KCl) evoked cell contraction, which was inhibited by imipramine. Caffeine, a releasing agent of the stored $Ca^{2+}$ from sarcoplasmic reticulum, evoked a contraction of the cells that was not blocked by the pretreatment with imipramine. These results suggest that imipramine inhibits the influx of calcium in the detrusor cells through both the receptor-operated- and voltage-gated-calcium channels, but does not affect the release of calcium from intracellular storage site.

  • PDF

Etomidoline이 각종 평활근에 미치는 영향 (Effect of Etomidoline on the Isolated smooth Muscle of Rabbit)

  • 김원준;김정희;신윤용
    • 대한약리학회지
    • /
    • 제16권2호
    • /
    • pp.25-29
    • /
    • 1980
  • Etomidoline ($Nonspa^{\circledR}$), which is chemically related to tertiary amine, is new synthetic antispasmodic agent with analgesic action. Antispasmodic effect of this agent is stronger than hyoscine butylbromide ($Buscopan^{\circledR}$), quaternary amine, and the absorption from intestine is also much higher. This study was undertaken to determine the effect of etomidoline on duodenal motility and other smooth muscles of rabbit. Strips of various isolated smooth muscle, 2 cm long from adult rabbits weighting about 2 kg, were suspended in a muscle chamber containing Tyrode's solution, which was bubbled with oxygen gas, and the temperature of the solution was kept constant at $38^{\circ}C$. After being washed with fresh solution several times the strips of smooth muscle attained constant motility and tonus. Etomidoline and other drugs were added in various concentrations to the chamber. Contractility of the strips was measured by using polygraph (Grass, model 7). The results are as follows: 1) In isolated rabbit atrium etomidoline produces a slight depression of contractility and the rate is also decreased. 2) On the other hand, etomidoline relaxed isolated strips of stomach, duodenal, and detrusor of rabbit. This relaxing effect of etomidoline on isolated duodenal strip of rabbit was not blocked by ${\alpha}$-adrenergic blocking agent, phenoxybenzamine, but by ${\beta}$-adrenergic blocking agent, propranolol. 3) Etomidoline did not exert any effect on isolated aorta, gall bladder, and trigone of rabbit. From the above results, it may be concluded that the relaxing effect of etomidoline on duodenal strip is related ${\beta}$-adrenergic receptor.

  • PDF

흰쥐 배뇨근에 존재하는 potassium 통로의 특성 (Characteristics of Potassium Channel in the Isolated Rat Detrusor Muscle)

  • 장명수;최은미;하정희;이광윤;김원준
    • Journal of Yeungnam Medical Science
    • /
    • 제11권2호
    • /
    • pp.363-374
    • /
    • 1994
  • 흰쥐의 적출 배뇨근에 대한 수종의 potassium 통로개방제의 작용을 관찰하고, 배뇨근에 존재하는 potassium 통로의 특성을 알아보기 위하여 체중 250~350g의 흰쥐 (Sprague-Dawley)를 단두하여 희생시킨 후 방광을 적출하였다. 적출된 방광으로 부터 $1.5mm{\times}1.5cm$의 배뇨근 수평절편을 만들어 1ml의 Tyrode 영양액을 포함하는 적출근편실험조에 현수하고 등척성장력을 측정하여 polygraph에 묘기하였다. 배뇨근절편은 potassium 통로 개방제인 pinacidil, BRL 38227 및 RP 52891의 누적 농도 첨가에 의하여 그 기본장력이 농도의존적으로 감소하였는데 그 작용강도는 RP 52891, pinacidil 그리고 BRL 38227의 순이었다. 전위 의존성 potassium 통로 봉쇄제인 procaine은 배뇨근 절편의 기본장력에 영향을 미치지 못했으며, pinacidil, BRL 38227 및 RP 52891에 의한 기본장력감소작용에 대해서도 영향을 미치지 못하였다. 칼슘 의존성 potassium 통로봉쇄제인 apamin은 배뇨근의 기본장력에 유의한 변화를 가져오지 못하였고, potassium 통로 개방제들에 대하여는 상경적 길항작용을 나타내지는 않았으나 BRL 38227과 RP 52891의 최고효능을 유의하게 감소시켰다. ATP 의존성 potassium 통로봉쇄제인 glibenclamide는 배뇨근 절편의 기본장력을 증가시키고, pinacidil을 상경적으로 길항하였으며, BRL 38227과 RP 52891을 상경적으로 길항하는 동시에 그 최대효능을 감소시켰다. 췌장의 ${\beta}$-세포에서 ATP 의존성 potassium 통로를 개방시켜 인슐린의 분비를 억제하는 galanin은 흰쥐의 배뇨근을 수축시켰다. 이상의 결과를 종합하면, 흰쥐의 배뇨근에서는 새로운 potassium 통로 개방제인 RP 52891의 배뇨근 이완작용이 pinacidil보다 강한 것으로 관찰되었다. 또 흰쥐 배뇨근에서는 ATP 의존성이며, glibenclamide 반응성인 potassium 통로가 존재 한다고 생각되는데, 이는 췌장의 ${\beta}$-세포에 있는 ATP 의존성 potassium 통로와는 다른 특성을 가진 것으로 추측된다.

  • PDF

A Novel Pathway Underlying the Inhibitory Effects of Melatonin on Isolated Rat Urinary Bladder Contraction

  • Han, June-Hyun;Chang, In-Ho;Myung, Soon-Chul;Lee, Moo-Yeol;Kim, Won-Yong;Lee, Seo-Yeon;Lee, Shin-Young;Lee, Seung-Wook;Kim, Kyung-Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.37-42
    • /
    • 2012
  • The aim of the present study was to elucidate the direct effects of melatonin on bladder activity and to determine the mechanisms responsible for the detrusor activity of melatonin in the isolated rat bladder. We evaluated the effects of melatonin on the contractions induced by phenylephrine (PE), acetylcholine (ACh), bethanechol (BCh), KCl, and electrical field stimulation (EFS) in 20 detrusor smooth muscle samples from Sprague-Dawley rats. To determine the mechanisms underlying the inhibitory responses to melatonin, melatonin-pretreated muscle strips were exposed to a calcium channel antagonist (verapamil), three potassium channel blockers [tetraethyl ammonium (TEA), 4-aminopyridine (4-AP), and glibenclamide], a direct voltage-dependent calcium channel opener (Bay K 8644), and a specific calcium/calmodulin-dependent kinase II (CaMKII) inhibitor (KN-93). Melatonin pretreatment ($10^{-8}{\sim}10^{-6}M$) decreased the contractile responses induced by PE ($10^{-9}{\sim}10^{-4}M$) and Ach ($10^{-9}{\sim}10^{-4}M$) in a dose-dependent manner. Melatonin ($10^{-7}M$) also blocked contraction induced by high KCl ($[KCl]_{ECF}$; 35 mM, 70 mM, 105 mM, and 140 mM) and EFS. Melatonin ($10^{-7}M$) potentiated the relaxation response of the strips by verapamil, but other potassium channel blockers did not change melatonin activity. Melatonin pretreatment significantly decreased contractile responses induced by Bay K 8644 ($10^{-11}{\sim}10^{-7}M$). KN-93 enhanced melatonin-induced relaxation. The present results suggest that melatonin can inhibit bladder smooth muscle contraction through a voltage-dependent, calcium-antagonistic mechanism and through the inhibition of the calmodulin/CaMKII system.

비-혈관평활근에서 새로운 $K^+$ 통로 개방제인 SKP-450의 약리학적 작용의 특성-Levcromakalim의 작용과 비교 (In Vitro Pharmacological Characteristics of SKP-450, A Novel $K^+$ Channel Opener, in Non-Vascular Smooth Muscles in Comparison with Levcromakalim)

  • 박지영;김현희;유성은;홍기환
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.759-767
    • /
    • 1997
  • In the present study, we characterized the non-vascular smooth muscle relaxant effects of a novel benzoyran derivative ,SKP-450 (2-[2'(1',3'-dioxolone)-2-methyl-4- (2'-oxo-1'-pyrrolidinyl) -6-nitro-2H-1- benzopyran) and its metabolite, SKP-310, in comparison with levcromakalim (LCRK). In the rat stomach fundus, the spontaneous motility stimulated by $10^{-6.5}\;M$ bethanechol was completely eliminated not only by $10^{-7}\;M$ SKP-450 but also by $10^{-6}\;M$ LCRK, which were blocked by $10^{-6}\;M$ glibenclamide. The inhibitory effect of SKP-450 $pD_2,\;3.94{\pm}0.66)$ was much less than LCRK $(pD2,\;5.73{\pm}0.38,\;p<0.05)$. In the bethanechol $(10{-6.5 }\;M)-stimulated$ urinary bladder, the tonus was decreased in association with elimination of spontaneous motility by $10^{-7}\;M$ M SKP-450 and $10^{-6}\;M\;LCRK\;(pD2,\;6.77{\pm}0.06)\;(P<0.05)$, which were inhibitable by $10^{-6}\;M$ glibenclamide. The inhibitory effect of SKP-450 $(pD2,\;7.66{\pm}0.05)$ was significantly more potent than that of LCRK $(pD2,\;6.77{\pm}0.06,\;p<0.05)$. In the rat uterus stimulated by $PGF_{2\alpha}\;(10^{-7}\;M)$, both increased tonus and spontaneous motility were eliminated by $10^{-6}\;M$ LCRK with slight depression of the tonus, but not by SKP-450 $(10^{-5}\;M)$. The stimulated trachea of guinea-pig by $10^{-6.5}\;M$ bethanechol was moderately suppressed by SKP-450 $(10^{-6}{sim}10^{-5}\;M)$ but little by SKP-310. In association with the relaxant effects, SKP-450 $(10^{-6}\;M)$ and LCRK $(10^{-5}\;M)$ caused a significant stimulation of the $^{86}Rb$ efflux from rat urinary bladder and stomach fundus, which were antagonized by $10^{-5}\;M$ glibenclamide, whereas the $K^+$ channel openers could not exert a stimulation of the $^{86}Rb$ efflux from rat uterus. In conclusion, it is suggested that SKP-450 exerts potent relaxant effects on the urinary bladder detrusor muscle and duodenum, whereas it shows much less effect on stomach fundus and uterus as contrasted to LCRK.

  • PDF

Spontaneous Electrical Activity of Cultured Interstitial Cells of Cajal from Mouse Urinary Bladder

  • Kim, Sun-Ouck;Jeong, Han-Seong;Jang, Sujeong;Wu, Mei-Jin;Park, Jong Kyu;Jiao, Han-Yi;Jun, Jae Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.531-536
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) from the urinary bladder regulate detrusor smooth muscle activities. We cultured ICCs from the urinary bladder of mice and performed patch clamp and intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) imaging to investigate whether cultured ICCs can be a valuable tool for cellular functional studies. The cultured ICCs displayed two types of spontaneous electrical activities which are similar to those recorded in intact bladder tissues. Spontaneous electrical activities of cultured ICCs were nifedipine-sensitive. Carbachol and ATP, both excitatory neurotransmitters in the urinary bladder, depolarized the membrane and increased the frequency of spike potentials. Carbachol increased $[Ca^{2+}]_i$ oscillations and basal $Ca^{2+}$ levels, which were blocked by atropine. These results suggest that cultured ICCs from the urinary bladder retain rhythmic phenotypes similar to the spontaneous electrical activities recorded from the intact urinary bladder. Therefore, we suggest that cultured ICCs from the urinary bladder may be useful for cellular and molecular studies of ICCs.