• Title/Summary/Keyword: Deterioration Assessment

Search Result 332, Processing Time 0.029 seconds

Quality Assessment by Analysis of Yoke Caulking Process Considering Strain Rate Sensitivity (변형률속도 민감성을 고려한 요크 코킹공정의 해석에 의한 품질 평가)

  • 박문식;강경모;한덕수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.37-46
    • /
    • 2003
  • This paper is to predict quality deterioration resulting from a caulking process of yoke which is a part of automotive steering system. The caluking is a plastic deformation process involving such as impact of high speed tool, contacts between part and fixtures and strain rate sensitivity of the part material. Elaborate application of finite element method is neccesary to calculate changes of part dimensions because they fall into a level of tolerances. Simple work hardening and strain rate sensitive model is proposed fur the material and applied for the simulation by using Abaqus which is able to cater for elastoplastic rate sensitive material and contacts. Numerical results of test models that represent tensile bar and tensile plate are compared with material data inputs. Dimensional changes for the yoke are calculated from simulations and compared to the mesurements and they show good agreement. The method presented here with the material model proved to be valuable to assess quality deterioration for similar metal forming processes.

Research on Durability Assessment of Asbestos Stabilizer for Asbestos-containing Ceiling Materials (석면 함유 천장재에 대한 석면 안정화제 내구성 평가 연구)

  • Ha, Joo-Yeon;Shin, Hyun-Gyoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.18-27
    • /
    • 2020
  • Objectives: For testing asbestos stabilizer products which are used for the maintenance and management of asbestos-containing materials, durability assessment should accompany the evaluation of basic properties and performance. Therefore, in this study we designed a testing method and constructed a database of durability performance, thereby providing basic data for reliability studies of asbestos stabilizer. Methods: Since the ceiling materials targeted in this study are interior materials, test conditions of 95% relative humidity and 60℃ temperature were designed in consideration of the effect of high relative humidity in summer and seasonal indoor temperatures. Plate-shaped specimens treated with asbestos stabilizers were maintained in a thermo-hygrostat for 5, 10, and 20 days, and then the asbestos scattering prevention rate was measured by air erosion testing. Results: The scattering concentration tended to increase with time under the single humidity condition, and exceeded the indoor air quality standard of 0.01 f/cc, during the 20 days of maintenance. On the other hand, there was little change according to the temperature condition. In the case of a complex condition with temperature and humidity, the results were similar to the humidity test, but the scattering concentration increased more sharply at 20 days. Conclusions: The main deterioration factor that affects the durability of asbestos stabilizer is humidity, and the deterioration is caused by a mechanism in which the stabilizer coated on the surface is re-dissolved by moisture and evaporates or the coating layer is peeled off, which is accelerated by high temperatures.

Development of performance assessment criterion for structures of shield TBM tunnel (쉴드 TBM 터널의 구조물 성능 평가 기준 개발)

  • Seong, Joo-Hyun;Lee, Yu-Seok;Hong, Eun-Soo;Byun, Yo-Seph
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.553-561
    • /
    • 2015
  • In this study, the performance assessment criterion for reasonable maintenance of shield TBM tunnel was presented. The performance assessment items such as crack, leakage, breakage, spalling, exfoliation/detachment, efflorescence, quality condition, exposure of steel, carbonation, faulting step, bolts condition, drainage condition, ground condition, contact section condition and conduit condition were selected by analyzing domestic and foreign performance assessment criterions and investigating segment lining deterioration cases through the site investigation and in-depth inspection analysis result on the shield TBM tunnel. In addition, the reasonable weight using AHP (Analytic Hierarchy Process) were estimated.

Assessment of Impact Rating Class and Deterioration Type on the Trails in Mt. Namsan District, Gyeongju National Park (경주국립공원 남산 지구의 탐방로 훼손 유형 및 환경피해도 평가)

  • Heo, Sang-Hyun;You, Ju-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1431-1442
    • /
    • 2015
  • This study was carried out to systematically maintain and manage the trails by assessing the physical characteristics, the types of deterioration and impact rating class of trails located in Mt. Nam District of the Gyeongju National Park. The major trails followed 6 routes including Sambulsa-Geumobong(A), Yongjangsaji-Geumobong(B), Yongjanggol-Yiyoungjae-Gowibong(C), Cheonusa-Gowibong(D), Sangseojang-Forest road(E) and Tongiljeon-Forest road(F). The routes length of A was 2.2 km, 2.7 km of B, 3.4 km of C, 1.3 km of D, 2.0 km of E and 1.0 km of F. In the physical characteristics, A was the widest and F was the narrowest in the width and bared width of trail. In depth of erosion, B was the deepest and E was the shallowest. D was the steepest and E was the gentlest in the slope. In the results of analysing the types of deterioration, A were 13 types, 11 types of B, C and D, 10 types of E and 6 types of F. The times of appearance of deterioration types in A were 86 times, 75 times of B, 105 times of C, 48 times of D, 47 times of E and 13 times of F. In case of the impact rating class, trail erosion was II degree, I degree of trail expansion, root exposure, trail divergence and rock exposure.

Deterioration Evaluation Method of Noise Barriers for Managements of Highway (고속도로 방음벽 유지관리를 위한 방음벽 노후도 평가 방안)

  • Kim, Sangtae;Shin, Ilhyoung;Kim, Kyoungsu;Kim, Daae;Kim, Heungrae;Im, Jahae;Lee, Jajun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.4
    • /
    • pp.387-399
    • /
    • 2019
  • This research aimed to prepare the classification of the damage types and the damage rating system of noise barriers for expressway noise barriers and to develop deterioration evaluation method of noise barriers by reflecting them. The noise barrier consists of soundproof panels, foundations and posts and the soundproof panels with 10 different types of materials are used in a single or mixed form.In this paper, damage of soundproof panel shows a single or composite damage, and thus a evaluation model of deterioration has been developed for noise barriers that can reflect the characteristic of noise barriers. Materials used mainly for soundproof walls were divided into material types for metal, plastic, timber, transparent and concrete. And damage types for noise barrier were classified into corrosion, discoloration, deformation, spalling and dislocation and damage types were subdivided according to the noise barrier's components and materials. Damage rating was divided into good, minor, normal and severe for each major part of noise barrier to assess damage rating of soundproof panel, foundation and post. The deterioration degree of noise barrier was evaluated comprehensively by using the deterioration evaluation method of whole noise barrier using weighted average. Deterioration evaluation method that can be systematically assessed has been developed for noise barrier using single or mixed soundproof panel and noise barrier with single or complex damage types. Through such an evaluation system, it is deemed that the deterioration status of noise barrier installed can be systematically understood and utilized for efficient maintenance planning and implementation for repair and improvement of noise barriers.

Deterioration and Microclimate in the Shelter for the Gaetaesajiseokbulibsang (Standing Triad Buddha Statues in Gaetaesaji Temple Site), Nonsan, Korea (논산 개태사지석불입상의 손상도와 보호각 내부의 미기후 환경)

  • Kim, Ji-Young;Park, Sun-Mi;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • The Gaetaesajiseokbulibsang (Treasure No. 219) consists of light gray and coarse to medium-grained granodiorite with feldspar phenocrysts in part. Magnetic susceptibility of the rock material was measured as 12.06(${\times}10^{-3}$ SI unit), being different from the granite($0.19{\times}10^{-3}$ SI unit) in the Mt. Cheonho. This indicates the raw material has been supplied from the outside. As a result of deterioration assessment, exfoliation of the Right Buddha, cement and dust of the Main Buddha were estimated as 35.2%, 21.1% and 25.0%. The ultrasonic velocity was measured as 2850.2m/s(Main Buddha), 2648.4m/s(Left Buddha) and 2644.5m/s(Right Buddha). The compressive strength calculated from the velocity showed low in the Right Buddha among three and the all pedestal parts which corresponds to the result of deterioration assessment. The indoor mean temperature and relative humidity of the shelter were $13.7^{\circ}C$ and 79.0%. It is evaluated that the indoor microclimate was stable and the shelter functioned to reduce climatic fluctuation of the outdoor. However, water condensation was occurred on the surface of the pedestal part during spring and summer, and freezing in winter season might also be done. These factors were probable to be a main cause of the surface exfoliation of the Triad Buddha Statues. Therefore, dehumidification and heating system in the shelter should be applied to prevent further deterioration.

  • PDF

Conservation Treatment Based on Material Characteristics, Provenance Presumption and Deterioration Diagnosis of the Seven-Storied Jungwon Tappyeongri Stone Pagoda, Chungju, Korea (중원탑평리칠층석탑의 재질특성과 산지추정 및 손상도 진단을 통한 보존처리)

  • Lee, Chan Hee;Kim, Moo Yeon;Jo, Young Hoon;Lee, Myeong Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.4-25
    • /
    • 2010
  • This study was carried out on scientific conservation treatment based on material characteristics, provenance interpretation, and deterioration diagnosis for seven-storied Jungwon Tappyeongri stone pagoda in Chungju. As a result, main rock of the pagoda is biotite granite with magnetite-series (average $5.86{\times}10^{-3}$ SI unit), containing partly basic xenolith, pegmatite veinlet and feldspar phenocryst. As a result of the provenance presumption of the host rock, a rock around the Songgang stream was identified the same origin. Therefore the rock is appropriate for materials of the pagoda restoration. The deterioration assessment suggested that the pagoda was seriously exfoliated (2.7 to 5.5%), discolored (39.8 to 58.9), and contaminated with repair materials (3.5 to 9.4%), and bioorganisms (19.3 to 24.4%). Accordingly, conservation treatment was carried out based on preliminary investigation for stable conservation of the pagoda. Overall processes were sequentially proceeded by restoration of the replacement stone, cleaning, joining and consolidation. This study sets up an integrated conservation system from preliminary investigation to conservation treatment of the pagoda. Also, the study will contribute for establishing the future-oriented customized conservation treatment.

Qualitative Assessment for Hazard on the Electric Power Installations of a Construction Field using FMEA (FMEA를 이용한 건설현장 전력설비의 위험성에 대한 정성적 평가)

  • Kim Doo-hyun;Lee Jong-ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.36-41
    • /
    • 2004
  • This paper presents an qualitative assessment for hazard on the electric power installations of a construction field using FMEL The power installations have the mission to maintain the highest level of service reliability on the works. The more capital the electric power invest the higher service reliability they plausibly will achieve. However, because of limited resources, how effectively budgets can be allocated to achieve service reliability as high as possible. The assessment typically generates recommendations for increasing component reliability, thus improving the power installation safety. The FMEA tabulates the failure modes of components and how their failure affects the power installations being considered. Tn order to estimate the risks of a failures, the FMEA presents criticality estimation or risk priority number using the severity, occurrence, and detectability. The results showed that the highest components of the risk priority number among components were condenser, transformer, MCCB and LA. And In case of the criticality estimation, the potential failure modes were abnormal temperature rise, insulation oil leakage, deterioration for the transformer, overcurrent for the MCCB and operation outage fir the LA.

Seismic performance of South Nias traditional timber houses: A priority ranking based condition assessment

  • Sodangi, Mahmoud;Kazmi, Zaheer Abbas
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.731-742
    • /
    • 2020
  • Due to incessant earthquakes, many historic South Nias traditional timber houses have been damaged while some still stand today. As Nias is part of an extremely active tectonic region and the buildings are getting older by day, it is essential that these unique houses are well maintained and functioning well. A post-earthquake condition assessment was conducted on 2 selected buildings; 'Building A' survived the seismic shakings while 'Building B' got severely damaged. The overall condition assessment of "Building A' was found out to be poor and the main structural members were not performing as intended. In 'Building B', the columns were not well anchored to the ground, no tie beams to tie the columns together, and eventually, the timber columns moved in various directions during the earthquake. The frequent earthquakes along with deterioration due to lack of proper maintenance program are responsible for the non-survival of the buildings. Thus, a process guideline for managing the maintenance of these buildings was proposed. This is necessary because managing the maintenance works could help to extend the life of the buildings and seek to avoid the need for potentially expensive and disruptive intervention works, which may damage the cultural significance of the buildings.