Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.5
/
pp.48-58
/
1998
In this paper, we proposed a new algorithm using characteristics of th ereconstructed phase trajectory by topological mapping developed for a real-tiem detection of the QRS complexes of ECG signals. Using fill-factor algorithm and mutual information algorithm which are in genral used to find out the chaotic characteristics of sampled signals, we inferred the proper mapping parameter, time delay, in ECG signals and investigated QRS detection rates with varying time delay in QRS complex detection. And we compared experimental time dealy with the theoretical one. As a result, it shows that the experimental time dealy which is proper in topological mapping from ECG signals is 20ms and theoretical time delays of fill-factor algorithm and mutual information algorithm are 20.+-.0.76ms and 28.+-.3.51ms, respectively. From these results, we could easily infer that the fill-factor algorithm in topological mapping from one-dimensional sampled ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper time delay. Also with the proposed algorithm which is very simple and robust to low-frequency noise as like baseline wandering, we could detect QRS complex in real-time by simplifying preprocessing stages. For the evaluation, we implemented the proposed algorithm in C-language and applied the MIT/BIH arrhythmia database of 48 patients. The proposed algorithm provides a good performance, a 99.58% detection rate.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.693-698
/
2018
This paper proposes a vehicle detection method for parking areas using unmanned aerial vehicles (UAVs) and using YOLOv2, which is a recent, known, fast, object-detection real-time algorithm. The YOLOv2 convolutional network algorithm can calculate the probability of each class in an entire image with a one-pass evaluation, and can also predict the location of bounding boxes. It has the advantage of very fast, easy, and optimized-at-detection performance, because the object detection process has a single network. The sliding windows methods and region-based convolutional neural network series detection algorithms use a lot of region proposals and take too much calculation time for each class. So these algorithms have a disadvantage in real-time applications. This research uses the YOLOv2 algorithm to overcome the disadvantage that previous algorithms have in real-time processing problems. Using Darknet, OpenCV, and the Compute Unified Device Architecture as open sources for object detection. a deep learning server is used for the learning and detecting process with each car. In the experiment results, the algorithm could detect cars in a dense area using UAVs, and reduced overhead for object detection. It could be applied in real time.
Lee, Young Kyu;Yang, Sung-hoon;Lee, Ho Seong;Lee, Jong Koo;Lee, Joon Hyo;Hwang, Sang-wook
Journal of Positioning, Navigation, and Timing
/
v.9
no.4
/
pp.397-403
/
2020
In order to synchronize a remote system time to the reference time like Coordinated Universal Time (UTC), it is required to compare the time difference between the two clocks. The time comparison data may have some outliers and the time synchronization performance can be significantly degraded if the outliers are not removed. Therefore, it is required to employ an effective outlier detection algorithm for keeping high accurate system time. In this paper, an outlier detection method is presented for the time difference data of GNSS time transfer receivers. The time difference data between the system time and the GNSS usually have slopes because the remote system clock is under free running until synchronized to the reference clock time. For investigating the outlier detection performance of the proposed algorithm, simulations are performed by using the time difference data of a GNSS time transfer receiver corrected to a free running Cesium clock with intentionally inserted outliers. From the simulation, it is investigated that the proposed algorithm can effectively detect the inserted outliers while conventional methods such as modified Z-score and adjusted boxplot cannot. Furthermore, it is also observed that the synchronization performance can be degraded to more than 15% with 20 outliers compared to that of original data without outliers.
Journal of the Korea Institute of Military Science and Technology
/
v.15
no.5
/
pp.601-614
/
2012
Since the optimized use of sonar systems available for detection is a very practical problem for a given ocean environment, the measure of mission achievability is needed for operating the sonar system efficiently. In this paper, a theory on Measure Of Effectiveness(MOE) for specific mission such as detection is described as the measure of mission achievability, and a recursive Cumulative Detection Probability(CDP) algorithm is found to be most efficient from comparing three CDP algorithms for discrete glimpses search to reduce computation time and memory for complicated scenarios. The three CDPs which are MOE for sonar-maneuver pattern are calculated as time evolves for comparison, based on three different formula depending on the assumptions as follows; dependent or independent glimpses, unimodal or non-unimodal distribution of Probability of Detection(PD) as a function of observation time interval for detection. The proposed CDP algorithm which is made from unimodal formula is verified and applied to OASPP(Optimal Acoustic Search Path Planning) with complicated scenarios.
Recently, image-based object detection has made great progress with the introduction of Convolutional Neural Network (CNN). Many trials such as Region-based CNN, Fast R-CNN, and Faster R-CNN, have been proposed for achieving better performance in object detection. YOLO has showed the best performance under consideration of both accuracy and computational complexity. However, these data-driven detection methods including YOLO have the fundamental problem is that they can not guarantee the good performance without a large number of training database. In this paper, we propose a data sampling method using CycleGAN to solve this problem, which can convert styles while retaining the characteristics of a given input image. We will generate the insufficient data samples for training more robust object detection without efforts of collecting more database. We make extensive experimental results using the day-time and night-time road images and we validate the proposed method can improve the object detection accuracy of the night-time without training night-time object databases, because we converts the day-time training images into the synthesized night-time images and we train the detection model with the real day-time images and the synthesized night-time images.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.10
/
pp.3475-3489
/
2014
Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.
This study was conducted to investigate the optimal artificial insemination (AI) time with diagnostic kit at ovulation time. We already applied the patent about the protein in the cow heat mucose in external reproductive tract. And we would examine the accuracy for detection of cow heat by the kit produced with the protein. Evaluation of optimal heat detection was tried two time at 12 hrs and 24 hrs after the heat. And then, AI service also performed two times with no relation to the results of heat diagnosis by heat detection kit and pregnancy rates were checked with rectal palpation on $60^{th}$ day after AI. Heat diagnostic results by kit in natural heat after 12 hrs in Hanwoo cows were showed 31.3~75.0% on positive in first heat detection and 33.3~100.0% on positve in second heat detection. In the $1^{st}$ positive results were significant different (p<0.05), but $2^{nd}$ positive were not. The results of heat detection showed different result on regional influence and individual cow effects. The pregnancy rates of first trial of heat detection were showed 34.4~78.7% on positive and 21.3~68.8% on negative after the diagnosis by heat detection kit. And the pregnancy rates of next trial of heat detection were showed 33.3~85.7% on positive and 14.3~66.6% on negative after the heat diagnosis. Both positive results of first trial and next trial also were showed significant different (p<0.05), but negative results were not. In positive result, first trial of total pregnancy rates was higher than the next trial of pregnancy, but there showed opposite results on negative results. In conclusion, the optimal heat detection kit is suitable to ordinary Hanwoo cows and it suggested that we have to improve the kit's accuracy by detecting the materials like proteins related optimal AI time.
Mycobacterium leprae detection is difficult even with molecular biological techniques due to the low sensitivity of current methodologies. In this report, real-time PCR targeting the M. leprae-specific repetitive element (RLEP) sequence was developed as a new diagnostic tool and evaluated using clinical specimens. For this, M. leprae DNAs were extracted from skin biopsy specimens from 80 patients and analyzed by real-time PCR using TaqMan probe. Then, the detection efficiency of the real-time PCR was compared with that of standard PCR. In brief, the rate of positive detection by the standard PCR and real-time PCR was 32.50% and 66.25%, respectively. The results seemed to clearly show that the TaqMan real-time PCR developed in this study may be a useful tool for sensitive detection of M. leprae from clinical specimens.
Journal of Institute of Control, Robotics and Systems
/
v.4
no.2
/
pp.246-255
/
1998
This paper presents a novel method for real-time malfunction detection of plasma etching process using EPD signal traces. First, many reference EPD signal traces are collected using monochromator and data acquisition system in normal etching processes. Critical points are defined by applying differentiation and zero-crossing method to the collected reference signal traces. Critical parameters such as intensity, slope, time, peak, overshoot, etc., determined by critical points, and frame attributes transformed signal-to symbol of reference signal traces are saved. Also, UCL(Upper Control Limit) and LCL(Lower Control Limit) are obtained by mean and standard deviation of critical parameters. Then, test EPD signal traces are collected in the actual processes, and frame attributes and critical parameters are obtained using the above mentioned method. Process malfunctions are detected in real-time by applying SPC(Statistical Process Control) method to critical parameters. the Real-time malfunction detection method presented in this paper was applied to actual processes and the results indicated that it was proved to be able to supplement disadvantages of existing quality control check inspecting or testing random-selected devices and detect process malfunctions correctly in real-time.
This study proposed an improvement in synchronously rotating reference frame-based voltage sag detection under distorted grid voltages. In the past, the conventional synchronously rotating reference frame (CSRRF)-based voltage sag detection was generally used in the voltage sag compensation applications. Its disadvantage is a long delay of detection time. The modified synchronously rotating reference frame (MSRRF)-based voltage sag detection is able to detect the voltage sag with only a short delay in detection time. However, its operation under distorted grid voltage conditions is unavailable. This paper proposed the improvement of modified synchronously rotating reference frame (IMSRRF)-based voltage sag detection for use in distorted grid voltages with very fast operation of voltage sag detection. The operation of the proposed voltage sag detections is investigated via simulations and experimentations to verify the performance of the IMSRRF-based voltage sag detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.