• Title/Summary/Keyword: Detection time

Search Result 8,986, Processing Time 0.035 seconds

Detection of Breathing Rates in Through-wall UWB Radar Utilizing JTFA

  • Liang, Xiaolin;Jiang, Yongling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5527-5545
    • /
    • 2019
  • Through-wall ultra-wide band (UWB) radar has been considered as one of the preferred and non-contact technologies for the targets detection owing to the better time resolution and stronger penetration. The high time resolution is a result of a larger of bandwidth of the employed UWB pulses from the radar system, which is a useful tool to separate multiple targets in complex environment. The article emphasised on human subject localization and detection. Human subject usually can be detected via extracting the weak respiratory signals of human subjects remotely. Meanwhile, the range between the detection object and radar is also acquired from the 2D range-frequency matrix. However, it is a challenging task to extract human respiratory signals owing to the low signal to clutter ratio. To improve the feasibility of human respiratory signals detection, a new method is developed via analysing the standard deviation based kurtosis of the collected pulses, which are modulated by human respiratory movements in slow time. The range between radar and the detection target is estimated using joint time-frequency analysis (JTFA) of the analysed characteristics, which provides a novel preliminary signature for life detection. The breathing rates are obtained using the proposed accumulation method in time and frequency domain, respectively. The proposed method is validated and proved numerically and experimentally.

Real-time Failure Detection of Composite Structures Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재 구조물의 실시간 파손감지)

  • 방형준;강현규;류치영;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.128-133
    • /
    • 2000
  • The objective of this research is to develop real-time failure detection techniques for damage assessment of composite materials using optical fiber sensors. Signals from matrix cracking or fiber fracture in composite laminates are treated by signal processing unit in real-time. This paper describes the implementation of time-frequency analysis such as the Short Time Fourier Transform(STFT) to determine the time of occurrence of failure. In order to verify the performance of the optical fiber sensor for stress wave detection, we performed pencil break test with EFPI sensor and compared it with that of PZT. The EFPI sensor was embedded in composite beam to sense the failure signals and a tensile test was performed. The signals of the fiber optic sensor when damage occurred were characterized using STFT and wavelet transform. Failure detection system detected the moment of failure accurately and showed good sensitivity with the infinitesimal failure signal.

  • PDF

Development of a Deep Learning Algorithm for Small Object Detection in Real-Time (실시간 기반 매우 작은 객체 탐지를 위한 딥러닝 알고리즘 개발)

  • Wooseong Yeo;Meeyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.1001-1007
    • /
    • 2024
  • Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.

Comparison of Region-based CNN Methods for Defects Detection on Metal Surface (금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교)

  • Lee, Minki;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

A SYN flooding attack detection approach with hierarchical policies based on self-information

  • Sun, Jia-Rong;Huang, Chin-Tser;Hwang, Min-Shiang
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.346-354
    • /
    • 2022
  • The SYN flooding attack is widely used in cyber attacks because it paralyzes the network by causing the system and bandwidth resources to be exhausted. This paper proposed a self-information approach for detecting the SYN flooding attack and provided a detection algorithm with a hierarchical policy on a detection time domain. Compared with other detection methods of entropy measurement, the proposed approach is more efficient in detecting the SYN flooding attack, providing low misjudgment, hierarchical detection policy, and low time complexity. Furthermore, we proposed a detection algorithm with limiting system resources. Thus, the time complexity of our approach is only (log n) with lower time complexity and misjudgment rate than other approaches. Therefore, the approach can detect the denial-of-service/distributed denial-of-service attacks and prevent SYN flooding attacks.

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we propose a fire detection system based on CCTV images using an object tracking technology with YOLOv4 model capable of real-time object detection and a DeepSORT algorithm. The fire detection model was learned from 10800 pieces of learning data and verified through 1,000 separate test sets. Subsequently, the fire detection rate in a single image and fire detection maintenance performance in the image were increased by tracking the detected fire area through the DeepSORT algorithm. It is verified that a fire detection rate for one frame in video data or single image could be detected in real time within 0.1 second. In this paper, our AI fire detection system is more stable and faster than the existing fire accident detection system.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

Solid medium integrated impedimetric biosensor for detection of microorganisms (미생물 검침을 위한 고체 배지 임피던스 센서)

  • Choi, Ah-Mi;Park, Jae-Sung;Jung, Hyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1629-1632
    • /
    • 2008
  • Rapid, real-time detection of pathogenic microorganisms is an emerging and quickly evolving field of research, especially with regard to microorganisms that pose a major threat to public health. Herein, a new method that uses bioimpedance and solid culture medium for the real-time detection of microorganisms is introduced. We fabricated a new impedimetric biosensor by integrating solid media and two plane electrodes attached on two facing sides of an acryl well. During bioelectrical impedance analysis, the solid medium showed the characteristics of a homogenous conductive material. In a real-time impedance measurement, our solid-medium biosensor could monitor bacterial growth in situ with a detection time of ${\sim}4$ hrs. Our data indicate that the solid-medium biosensor is useful for detecting airborne microorganisms, thereby providing a new analytical tool for impedance microbiology.

  • PDF

Robust Real-time Object Detection on Construction Sites Using Integral Channel Features

  • Kim, Jinwoo;Chi, Seokho
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.304-309
    • /
    • 2015
  • On construction sites, it is important to monitor the performance of construction equipment and workers to achieve successful construction project management; especially, vision-based detection methods have advantages for the real-time site data collection for safety and productivity analyses. Although many researchers developed vision-based detection methods with acceptable performance, there are still limitations to be addressed: 1) sensitiveness to the shape and appearance changes of moving objects in difference working postures, and 2) high computation time. To deal with the limitations, this paper proposes a detection algorithm of construction equipment based on Integral Channel Features. For validation, 16,850 frames of video streams were recorded and analyzed. The results showed that the proposed method worked in high performance in terms of accuracy and processing time. In conclusion, the developed method can help to understand useful site information including working pattern, working time and input manpower analyses.

  • PDF