• Title/Summary/Keyword: Detection of low elevation weather

Search Result 3, Processing Time 0.017 seconds

Analysis of Detection Method for the Weather Change in a Local Weather Radar (국지적 기상 레이다에서의 기상 변화 탐지 방법 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1345-1352
    • /
    • 2021
  • Most of weather radar systems are used to monitor the whole weather situation for the very wide and medium-to-long range area. However, as the likelihood of occurrence of the local weather hazards is increased in recent days, it is very important to detect these wether phenomena with a local weather radar. For this purpose, it is necessary to detect the fast varying low altitude weather conditions and the effect of the ground surface clutter is more evident. Therefore, in this paper, the newly suggested method is explained and analyzed for detection of weather hazards such as the gust and wind shear using the fluctuation of wind velocities and the gradient of wind velocities among range cells. It is shown that the suggested method can be used efficiently in the future for faster detection of weather change through the simple algorithm implementation and also the effect of the ground clutter can be minimized in the detection procedure.

Doppler Spectrum Estimation in a Low Elevation Weather Radar (저고도 기상 레이다에서의 도플러 스펙트럼 추정)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1492-1499
    • /
    • 2020
  • A weather radar system generally shows the weather phenomena related with rainfall and wind velocity. These systems are usually very helpful to monitor the relatively high altitude weather situation for the wide and long range area. However, since the weather hazards due to the strong hail and heavy rainfall occurring locally are observed frequently in recent days, it is important to detect these wether phenomena. For this purpose, it is necessary to detect the fast varying low altitude weather conditions. In this environment, the effect of surface clutter is more evident and the antenna dwell time is much shorter. Therefore, the conventional Doppler spectrum estimation method may cause serious problems. In this paper, the AR(autoregressive) Doppler spectrum estimation methods were applied to solve these problems and the results were analyzed. Applied methods show that improved Doppler spectra can be obtained comparing with the conventional FFT(Fast Fourier Transform) method.

Analysis of the Efficient Clutter Removal Method Using an Array Antenna in a Local Weather Radar (국지적 기상 레이다에서의 배열 안테나를 이용한 효율적인 클러터 제거 방법 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1180-1187
    • /
    • 2022
  • As the likelihood of occurrence of the localized microbursts or severe flooding is increased due to the unusual weather changes, it is the very urgent problem to detect these weather hazards with a local weather radar. For a local weather radar of this purpose, it is essential to detect the low altitude and the fast varying weather conditions. Therefore, the very fast update of the weather information and the efficient clutter removal is very important. To achieve this goal, the appropriate method should be applied which does not need the mechanical elevation scanning and has the capability of the efficient clutter removal. Therefore, in this paper, the usefulness of the implementation of elevational filter banks with the spatial FFT algorithm was analyzed and investigated using a simple array antenna. It is shown that the suggested method can be used for both the minimization of the ground clutter and the fast update of weather information.