• 제목/요약/키워드: Detection of defect

검색결과 722건 처리시간 0.027초

CNN 알고리즘을 이용한 인공지지체의 3D프린터 출력 시 실시간 출력 불량 탐지 시스템에 관한 연구 (A Study on Real-Time Defect Detection System Using CNN Algorithm During Scaffold 3D Printing)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.125-130
    • /
    • 2021
  • Scaffold is used to produce bio sensor. Scaffold is required high dimensional accuracy. 3D printer is used to manufacture scaffold. 3D printer can't detect defect during printing. Defect detection is very important in scaffold printing. Real-time defect detection is very necessary on industry. In this paper, we proposed the method for real-time scaffold defect detection. Real-time defect detection model is produced using CNN(Convolution Neural Network) algorithm. Performance of the proposed model has been verified through evaluation. Real-time defect detection system are manufactured on hardware. Experiments were conducted to detect scaffold defects in real-time. As result of verification, the defect detection system detected scaffold defect well in real-time.

A Defect Detection Algorithm of Denim Fabric Based on Cascading Feature Extraction Architecture

  • Shuangbao, Ma;Renchao, Zhang;Yujie, Dong;Yuhui, Feng;Guoqin, Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.109-117
    • /
    • 2023
  • Defect detection is one of the key factors in fabric quality control. To improve the speed and accuracy of denim fabric defect detection, this paper proposes a defect detection algorithm based on cascading feature extraction architecture. Firstly, this paper extracts these weight parameters of the pre-trained VGG16 model on the large dataset ImageNet and uses its portability to train the defect detection classifier and the defect recognition classifier respectively. Secondly, retraining and adjusting partial weight parameters of the convolution layer were retrained and adjusted from of these two training models on the high-definition fabric defect dataset. The last step is merging these two models to get the defect detection algorithm based on cascading architecture. Then there are two comparative experiments between this improved defect detection algorithm and other feature extraction methods, such as VGG16, ResNet-50, and Xception. The results of experiments show that the defect detection accuracy of this defect detection algorithm can reach 94.3% and the speed is also increased by 1-3 percentage points.

순차적 결함 검출 방법에 기반한 TFT-LCD 결함 영역 검출 (TFT-LCD Defect Blob Detection based on Sequential Defect Detection Method)

  • 이은영;박길흠
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.73-83
    • /
    • 2015
  • 본 논문에서는 순차적 결함 검출 방법을 이용하여 TFT-LCD의 결함 영역(Blob)을 효과적으로 검출하는 알고리즘을 제안한다. 먼저 결함과 배경 간의 휘도 차를 이용하여 영상의 각 화소들에 대한 결함 확률을 판단하고, 결함 확률에 따른 순차적 결함 검출 방법을 이용하여 결함 후보 화소를 검출한다. 여기서 결함 확률이란 결함 후보 화소가 검출된 단계에 따라 결함 영역에 포함될 가능성을 나타내다. 형태학 연산을 적용함으로써 검출된 후보 화소들을 후보 결함 영역으로 형성하고, 각 후보 결함 영역에 대한 결함 가능성을 계산하여 결함 영역을 검출한다. 모의 TFT-LCD 영상을 생성하여 제안 방법의 타당성을 검증하고, 실제 TFT-LCD 영상에 적용함으로서 제안 알고리즘의 우수한 결함 검출 성능을 확인하였다.

인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구 (A Comparative Study on Deep Learning Models for Scaffold Defect Detection)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

딥러닝 알고리즘을 이용한 3D프린팅 골절합용 판의 표면 결함 탐지 모델에 관한 연구 (A Study on Surface Defect Detection Model of 3D Printing Bone Plate Using Deep Learning Algorithm)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.68-73
    • /
    • 2022
  • In this study, we produced the surface defect detection model to automatically detect defect bone plates using a deep learning algorithm. Bone plates with a width and a length of 50 mm are most used for fracture treatment. Normal bone plates and defective bone plates were printed on the 3d printer. Normal bone plates and defective bone plates were photographed with 1,080 pixels using the webcam. The total quantity of collected images was 500. 300 images were used to learn the defect detection model. 200 images were used to test the defect detection model. The mAP(Mean Average Precision) method was used to evaluate the performance of the surface defect detection model. As the result of confirming the performance of the surface defect detection model, the detection accuracy was 96.3 %.

Automatic Metallic Surface Defect Detection using ShuffleDefectNet

  • Anvar, Avlokulov;Cho, Young Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.19-26
    • /
    • 2020
  • 일반적으로 품질 관리는 많은 제조 공정, 특히 주조 또는 용접과 관련된 공정의 기본 구성 요소가 된다. 그러나 사람이 일일이 수동으로 품질 관리 절차를 하는 것은 종종 시간이 걸리고 오류가 발생하기 쉽다. 최근 고품질 제품에 대한 요구를 만족시키기 위해 지능형 육안 검사 시스템의 사용이 생산 라인에서 필수적이 되고 있다. 본 논문에서는 이를 위해 딥 러닝 기반의 ShuffleDefectNet 결함 감지 시스템을 제안하고자 한다. 제안된 결함 검출 시스템은 NEU 데이터 세트의 결함 검출에 대한 여러 최신 성능들보다 높은 평균 정확도 99.75% 정도를 얻는다. 이 논문에서 여러 다른 트레이닝 데이터로부터 최상의 성능을 탐지하고 탐지 성능을 관찰하였다. 그 결과 ShuffleDefectNet의 전체 아키텍처를 사용할 때 정확성과 속도가 크게 향상됨을 알 수 있었다.

Performance evaluation of wavelet and curvelet transforms based-damage detection of defect types in plate structures

  • Hajizadeh, Ali R.;Salajegheh, Javad;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.667-691
    • /
    • 2016
  • This study focuses on the damage detection of defect types in plate structures based on wavelet transform (WT) and curvelet transform (CT). In particular, for damage detection of structures these transforms have been developed since the last few years. In recent years, the CT approach has been also introduced in an attempt to overcome inherent limitations of traditional multi-scale representations such as wavelets. In this study, the performance of CT is compared with WT in order to demonstrate the capability of WT and CT in detection of defect types in plate structures. To achieve this purpose, the damage detection of defect types through defect shape in rectangular plate is investigated. By using the first mode shape of plate structure and the distribution of the coefficients of the transforms, the damage existence, the defect location and the approximate shape of defect are detected. Moreover, the accuracy and performance generality of the transforms are verified through using experimental modal data of a plate.

초음파 서모그라피를 이용한 빠른 PCB 결함 검출 (Fast Defect Detection of PCB using Ultrasound Thermography)

  • 조재완;정현규;서용칠;정승호;김승호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

TFT-LCD 영상에서 결함 군집도 특성 기반의 확률밀도함수를 이용한 결함 검출 알고리즘 (Defect Detection algorithm of TFT-LCD Polarizing Film using the Probability Density Function based on Cluster Characteristic)

  • 구은혜;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제19권3호
    • /
    • pp.633-641
    • /
    • 2016
  • Automatic defect inspection system is composed of the step in the pre-processing, defect candidate detection, and classification. Polarizing films containing various defects should be minimized over-detection for classifying defect blobs. In this paper, we propose a defect detection algorithm using a skewness of histogram for minimizing over-detection. In order to detect up defects with similar to background pixel, we are used the characteristics of the local region. And the real defect pixels are distinguished from the noise using the probability density function. Experimental results demonstrated the minimized over-detection by utilizing the artificial images and real polarizing film images.

Defect Detection of Steel Wire Rope in Coal Mine Based on Improved YOLOv5 Deep Learning

  • Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.745-755
    • /
    • 2023
  • The wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions exerts an exceedingly crucial role in safe production. The existing defect detection solutions exhibit some deficiencies pertaining to the flexibility, accuracy and real-time performance of wire rope defect detection. To solve the aforementioned problems, this study utilizes the camera to sample the wire rope before the well entry, and proposes an object based on YOLOv5. The surface small-defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to enhance the model accuracy of small sample training. Herein, the enhanced YOLOv5 algorithm effectively enhances the accuracy of target detection and solves the defect detection problem of wire rope utilized in mine, and somewhat avoids accidents occasioned by wire rope damage. After a large number of experiments, it is revealed that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly enhanced with those before the modification, and that the detection speed can be maintained at a real-time level.