The use of unmanned aerial vehicle (UAV) have been regarded as a promising technique in both military and civilian applications. Nevertheless, due to the lack of relevant and regulations and laws, the misuse of illegal drones poses a serious threat to social security. In this paper, aiming at deriving the three-dimension optimal surveillance trajectories for group monitoring drones, we develop a group trajectory planner based on the particle swarm optimization and updating mechanism. Together, to evaluate the trajectories generated by proposed trajectory planner, we propose a group-objectives fitness function in accordance with energy consumption, flight risk. The simulation results validate that the group trajectories generated by proposed trajectory planner can preferentially visit important areas while obtaining low energy consumption and minimum flying risk value in various practical situations.
Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Tak-Young Kim;Seon Woong Jang
Korean Journal of Remote Sensing
/
v.40
no.2
/
pp.151-166
/
2024
Coastal debris presents a significant environmental threat globally. This research sought to improve the monitoring methods for coastal debris by employing deep learning and remote sensing technologies. To achieve this, an object detection approach utilizing the You Only Look Once (YOLO)v8 model was implemented to develop a comprehensive image dataset for 11 primary types of coastal debris in our country, proposing a protocol for the real-time detection and analysis of debris. Drone imagery was collected over Sinja Island, situated at the estuary of the Nakdong River, and analyzed using our custom YOLOv8-based analysis program to identify type-specific hotspots of coastal debris. The deployment of these mapping and analysis methodologies is anticipated to be effectively utilized in managing coastal debris.
Monitoring civil structures periodically is necessary for ensuring the fitness of the structures. Cracks on inner and outer surfaces of the building plays a vital role in indicating the health of the building. Conventionally, human visual inspection techniques were carried up to human reachable altitudes. Monitoring of high rise infrastructures cannot be done using this primitive method. Also, there is a necessity for more accurate prediction of cracks on building surfaces for ensuring the health and safety of the building. The proposed research focused on developing an efficient crack classification model using Transfer Learning enabled EfficientNet (TL-EN) architecture. Though many other pre-trained models were available for crack classification, they rely on more number of training parameters for better accuracy. The TL-EN model attained an accuracy of 0.99 with less number of parameters on large dataset. A bench marked METU dataset with 40000 images were used to test and validate the proposed model. The surfaces of high rise buildings were investigated using vision enabled Unmanned Arial Vehicles (UAV). These UAV is fabricated with TL-EN model schema for capturing and analyzing the real time streaming video of building surfaces.
Physical layer security (PLS) can improve the security of both terrestrial and nonterrestrial wireless communication networks. This study proposes a simplified framework for nonterrestrial cyclic prefixed orthogonal variable spreading factor (OVSF)-encoded multiple-input and multiple-output nonorthogonal multiple access (NOMA) systems to ensure complete network security. Various useful methods are implemented, where both improved sine map and multiple parameter-weighted-type fractional Fourier transform encryption schemes are combined to investigate the effects of hybrid PLS. In addition, OVSF coding with power domain NOMA for multi-user interference reduction and peak-toaverage power ratio (PAPR) reduction is introduced. The performance of $\frac{1}{2}$-rated convolutional, turbo, and repeat and accumulate channel coding with regularized zero-forcing signal detection for forward error correction and improved bit error rate (BER) are also investigated. Simulation results ratify the pertinence of the proposed system in terms of PLS and BER performance improvement with reasonable PAPR.
Bae, Jaehoon;Jang, Arum;Park, Min Jae;Lee, Jonghoon;Ju, Young K.
Steel and Composite Structures
/
v.43
no.4
/
pp.501-509
/
2022
Cracks are common defects in concrete structures. Thus far, crack inspection has been manually performed using the contact inspection method. This manpower-dependent method inevitably increases the cost and work hours. Various non-contact studies have been conducted to overcome such difficulties. However, previous studies have focused on developing a methodology for non-contact inspection or local quantitative detection of crack width or length on concrete surfaces. However, crack depth can affect the safety of concrete structures. In particular, although macrocrack depth is structurally fatal, it is difficult to find it with the existing method. Therefore, an experimental investigation based on non-contact infrared thermography and multivariate machine learning was performed in this study to estimate the hidden macrocrack depth. To consider practical applications for inspection, an experiment was conducted that considered the simulated piloting of an unmanned aerial vehicle equipped with infrared thermography equipment. The crack depths (10-60 mm) were comparatively evaluated using linear regression, gradient boosting, and random forest (AI regression methods).
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.3
/
pp.901-920
/
2015
Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.
Park, Soon-Chul;Chun, Se-Bum;Kim, Jeong-Won;Heo, Moon-Beom
Journal of Advanced Navigation Technology
/
v.14
no.6
/
pp.791-799
/
2010
In this paper, integrated navigation algorithm is designed for land transport sector which is needed high accuracy and monitoring program is developed for lane departure warning. High accuracy position information which is possible lane separation is needed for lane departure warning, so position detection algorithm based GPS/DR which combine GPS with dead reckoning is proposed. For the verification of the designed integrated navigation algorithm, we drived to acquire data and showed post-processing experiment results with monitoring program. Vehicle driving movie and aerial photograph in monitoring program is designed to show lane keeping and lane separation.
In the disaster of collapse, an immediate response is needed to prevent the damage from worsening, and damage area calculation, response and recovery plan should be established. This requires accurate detection of the damage affected area. This study performed the detection of the damaged area by using UAV which can respond quickly and in real-time to detect the collapse accident. The study area was selected as B-05 housing redevelopment area in Jung-gu, Ulsan, where the demolition of houses and apartments in progress as the redevelopment project began. This area resembles a collapsed state of the building, which clear changes before and after the demolition. UAV images were acquired on May 17 and July 9, 2019, respectively. The changing area was considered as the damaged area before and after the collapse of the building, and the changing area was detected using CVA (Change Vector Analysis) the Representative Change Detection Technique, and SLIC (Simple Linear Iterative Clustering) based superpixel algorithm. In order to accurately perform the detection of the damaged area, the uninterested area (vegetation) was firstly removed using ExG (Excess Green), Among the objects that were detected by change, objects that had been falsely detected by area were finally removed by calculating the minimum area. As a result, the accuracy of the detection of damaged areas was 95.39%. In the future, it is expected to be used for various data such as response and recovery measures for collapse accidents and damage calculation.
Kim, Na-Kyeong;Park, Mi-So;Jeong, Min-Ji;Hwang, Do-Hyun;Yoon, Hong-Joo
Korean Journal of Remote Sensing
/
v.37
no.3
/
pp.367-378
/
2021
Field compost is a representative non-point pollution source for livestock. If the field compost flows into the water system due to rainfall, nutrients such as phosphorus and nitrogen contained in the field compost can adversely affect the water quality of the river. In this paper, we propose a method for detecting field compost using unmanned aerial vehicle images and deep learning-based semantic segmentation. Based on 39 ortho images acquired in the study area, about 30,000 data were obtained through data augmentation. Then, the accuracy was evaluated by applying the semantic segmentation algorithm developed based on U-net and the filtering technique of Open CV. As a result of the accuracy evaluation, the pixel accuracy was 99.97%, the precision was 83.80%, the recall rate was 60.95%, and the F1-Score was 70.57%. The low recall compared to precision is due to the underestimation of compost pixels when there is a small proportion of compost pixels at the edges of the image. After, It seems that accuracy can be improved by combining additional data sets with additional bands other than the RGB band.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.34
no.3
/
pp.283-290
/
2016
Even though existing methods for orthophoto production in traditional photogrammetry are effective in large areas, they are inefficient when dealing with change detection of geometric features and image production for short time periods in small areas. In recent years, the UAV (Unmanned Aerial Vehicle), equipped with various sensors, is rapidly developing and has been implemented in various ways throughout the geospatial information field. The data and imagery of specific areas can be quickly acquired by UAVs at low costs and with frequent updates. Furthermore, the redundancy of geospatial information data can be minimized in the UAV-based orthophoto generation. In this paper, the orthophoto and DEM (Digital Elevation Model) are generated using a standard low-end UAV in small sloped areas which have a rather low accuracy compared to flat areas. The RMSE of the check points is σH = ±0.12 m on a horizontal plane and σV = ±0.09 m on a vertical plane. As a result, the maximum and mean RMSE are in accordance with the working rule agreement for the airborne laser scanning surveying of the NGII (National Geographic Information Institute) on a 1/500 scale digital map. Through this study, we verify the possibilities of the orthophoto generation in small slope areas using general-purpose low specification UAV rather than a high cost surveying UAV.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.