• Title/Summary/Keyword: Detection framework

Search Result 542, Processing Time 0.02 seconds

A Secure Communication Framework for the Detection System of Network Vulnerability Scan Attacks (네트워크 취약점 검색공격 탐지 시스템을 위한 안전한 통신 프레임워크 설계)

  • You, Il-Sun;Kim, Jong-Eun;Cho, Kyung-San
    • The KIPS Transactions:PartC
    • /
    • v.10C no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In this paper, we propose a secure communication framework for interaction and information sharing between a server and agents in DS-NVSA(Detection System of Network Vulnerability Scan Attacks) proposed in〔1〕. For the scalability and interoperability with other detection systems, we design the proposed IDMEF and IAP that have been drafted by IDWG. We adapt IDMEF and IAP to the proposed framework and provide SKTLS(Symmetric Key based Transport Layer Security Protocol) for the network environment that cannot afford to support public-key infrastructure. Our framework provides the reusability of heterogeneous intrusion detection systems and enables the scope of intrusion detection to be extended. Also it can be used as a framework for ESM(Enterprise Security Management) system.

State-Monitoring Component-based Fault-tolerance Techniques for OPRoS Framework (상태감시컴포넌트를 사용한 OPRoS 프레임워크의 고장감내 기법)

  • Ahn, Hee-June;Ahn, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.780-785
    • /
    • 2010
  • The OPRoS (Open Platform for Robotic Services) framework is proposed as an application runtime environment for service robot systems. For the successful deployment of the OPRoS framework, fault tolerance support is crucial on top of its basic functionalities of lifecycle, thread and connection management. In the previous work [1] on OPRoS fault tolerance supports, we presented a framework-based fault tolerance architecture. In this paper, we extend the architecture with component-based fault tolerance techniques, which can provide more simplicity and efficiency than the pure framework-based approach. This argument is especially true for fault detection, since most faults and failure can be defined when the system cannot meet the requirement of the application functions. Specifically, the paper applies two widely-used fault detection techniques to the OPRoS framework: 'bridge component' and 'process model' component techniques for fault detection. The application details and performance of the proposed techniques are demonstrated by the same application scenario in [1]. The combination of component-based techniques with the framework-based architecture would improve the reliability of robot systems using the OPRoS framework.

Keyed learning: An adversarial learning framework-formalization, challenges, and anomaly detection applications

  • Bergadano, Francesco
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.608-618
    • /
    • 2019
  • We propose a general framework for keyed learning, where a secret key is used as an additional input of an adversarial learning system. We also define models and formal challenges for an adversary who knows the learning algorithm and its input data but has no access to the key value. This adversarial learning framework is subsequently applied to a more specific context of anomaly detection, where the secret key finds additional practical uses and guides the entire learning and alarm-generating procedure.

On-line Shared Platform Evaluation Framework for Advanced Persistent Threats

  • Sohn, Dongsik;Lee, Taejin;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2610-2628
    • /
    • 2019
  • Advanced persistent threats (APTs) are constant attacks of specific targets by hackers using intelligent methods. All current internal infrastructures are constantly subject to APT attacks created by external and unknown malware. Therefore, information security officers require a framework that can assess whether information security systems are capable of detecting and blocking APT attacks. Furthermore, an on-line evaluation of information security systems is required to cope with various malicious code attacks. A regular evaluation of the information security system is thus essential. In this paper, we propose a dynamic updated evaluation framework to improve the detection rate of internal information systems for malware that is unknown to most (over 60 %) existing static information security system evaluation methodologies using non-updated unknown malware.

Resource Efficient AI Service Framework Associated with a Real-Time Object Detector

  • Jun-Hyuk Choi;Jeonghun Lee;Kwang-il Hwang
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • This paper deals with a resource efficient artificial intelligence (AI) service architecture for multi-channel video streams. As an AI service, we consider the object detection model, which is the most representative for video applications. Since most object detection models are basically designed for a single channel video stream, the utilization of the additional resource for multi-channel video stream processing is inevitable. Therefore, we propose a resource efficient AI service framework, which can be associated with various AI service models. Our framework is designed based on the modular architecture, which consists of adaptive frame control (AFC) Manager, multiplexer (MUX), adaptive channel selector (ACS), and YOLO interface units. In order to run only a single YOLO process without regard to the number of channels, we propose a novel approach efficiently dealing with multi-channel input streams. Through the experiment, it is shown that the framework is capable of performing object detection service with minimum resource utilization even in the circumstance of multi-channel streams. In addition, each service can be guaranteed within a deadline.

A Design of false alarm analysis framework of intrusion detection system by using incremental mining method (점진적 마이닝 기법을 적용한 침입탐지 시스템의 오 경보 분석 프레임워크 설계)

  • Kim Eun-Hee;Ryu Keun-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.295-302
    • /
    • 2006
  • An intrusion detection system writes a lot of alarms against attack behaviors in real time. These alarms contain not only actual attack alarms, but also false alarms that are mistakes made by the intrusion detection system. False alarms are the main reason that reduces the efficiency of the intrusion detection system, and we propose framework for false alarms analysis in the paper. Also, we apply an incremental data mining method for pattern analysis of false alarms increasing continuously. The framework consists of GUI, DB Manager, Alert Preprocessor, and False Alarm Analyzer. We analyze the false alarms increasingly through the experiment of the proposed framework and show that false alarms are reduced by applying the analyzed false alarm rules in the intrusion detection system.

An Alert Data Mining Framework for Intrusion Detection System (침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크)

  • Shin, Moon-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.459-466
    • /
    • 2011
  • In this paper, we proposed a data mining framework for the management of alerts in order to improve the performance of the intrusion detection systems. The proposed alert data mining framework performs alert correlation analysis by using mining tasks such as axis-based association rule, axis-based frequent episodes and order-based clustering. It also provides the capability of classify false alarms in order to reduce false alarms. We also analyzed the characteristics of the proposed system through the implementation and evaluation of the proposed system. The proposed alert data mining framework performs not only the alert correlation analysis but also the false alarm classification. The alert data mining framework can find out the unknown patterns of the alerts. It also can be applied to predict attacks in progress and to understand logical steps and strategies behind series of attacks using sequences of clusters and to classify false alerts from intrusion detection system. The final rules that were generated by alert data mining framework can be used to the real time response of the intrusion detection system.

An Improved Saliency Detection for Different Light Conditions

  • Ren, Yongfeng;Zhou, Jingbo;Wang, Zhijian;Yan, Yunyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1155-1172
    • /
    • 2015
  • In this paper, we propose a novel saliency detection framework based on illumination invariant features to improve the accuracy of the saliency detection under the different light conditions. The proposed algorithm is divided into three steps. First, we extract the illuminant invariant features to reduce the effect of the illumination based on the local sensitive histograms. Second, a preliminary saliency map is obtained in the CIE Lab color space. Last, we use the region growing method to fuse the illuminant invariant features and the preliminary saliency map into a new framework. In addition, we integrate the information of spatial distinctness since the saliency objects are usually compact. The experiments on the benchmark dataset show that the proposed saliency detection framework outperforms the state-of-the-art algorithms in terms of different illuminants in the images.

A Smart Framework for Mobile Botnet Detection Using Static Analysis

  • Anwar, Shahid;Zolkipli, Mohamad Fadli;Mezhuyev, Vitaliy;Inayat, Zakira
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2591-2611
    • /
    • 2020
  • Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.

Multi-spectral Vehicle Detection based on Convolutional Neural Network

  • Choi, Sungil;Kim, Seungryong;Park, Kihong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1909-1918
    • /
    • 2016
  • This paper presents a unified framework for joint Convolutional Neural Network (CNN) based vehicle detection by leveraging multi-spectral image pairs. With the observation that under challenging environments such as night vision and limited light source, vehicle detection in a single color image can be more tractable by using additional far-infrared (FIR) image, we design joint CNN architecture for both RGB and FIR image pairs. We assume that a score map from joint CNN applied to overall image can be considered as confidence of vehicle existence. To deal with various scale ratios of vehicle candidates, multi-scale images are first generated scaling an image according to possible scale ratio of vehicles. The vehicle candidates are then detected on local maximal on each score maps. The generation of overlapped candidates is prevented with non-maximal suppression on multi-scale score maps. The experimental results show that our framework have superior performance than conventional methods with a joint framework of multi-spectral image pairs reducing false positive generated by conventional vehicle detection framework using only single color image.