• Title/Summary/Keyword: Detection accuracy

Search Result 3,951, Processing Time 0.035 seconds

A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network (합성곱 신경망을 이용한 선박 기관실에서의 화재 검출에 관한 연구)

  • Park, Kyung-Min;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.476-481
    • /
    • 2019
  • Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.

Armed person detection using Deep Learning (딥러닝 기반의 무기 소지자 탐지)

  • Kim, Geonuk;Lee, Minhun;Huh, Yoojin;Hwang, Gisu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.780-789
    • /
    • 2018
  • Nowadays, gun crimes occur very frequently not only in public places but in alleyways around the world. In particular, it is essential to detect a person armed by a pistol to prevent those crimes since small guns, such as pistols, are often used for those crimes. Because conventional works for armed person detection have treated an armed person as a single object in an input image, their accuracy is very low. The reason for the low accuracy comes from the fact that the gunman is treated as a single object although the pistol is a relatively much smaller object than the person. To solve this problem, we propose a novel algorithm called APDA(Armed Person Detection Algorithm). APDA detects the armed person using in a post-processing the positions of both wrists and the pistol achieved by the CNN-based human body feature detection model and the pistol detection model, respectively. We show that APDA can provide both 46.3% better recall and 14.04% better precision than SSD-MobileNet.

Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network

  • Gao, Ke;Chen, Zhi-Dan;Weng, Shun;Zhu, Hong-Ping;Wu, Li-Ying
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.129-140
    • /
    • 2022
  • The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.

Analytic Techniques for Change Detection using Landsat (Landast 영상을 이용한 변화탐지 분석 기법 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Suh, Yong-Cheol;Kim, Ji-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Techniques for change detection using satellite images enable efficient detection of natural and artificial changes in use of land through multi-phase images. As for change detection, different results are made based on methods of calibration of satellite images, types of input data, and techniques in change analysis. Thus, an analytic technique that is appropriate to objectives of a study shall be applied as results are different based on diverse conditions even when an identical satellite and an identical image are used for change detection. In this study, Normalized Difference Vegetation Index (NDVI) and Principal Component Analysis (PCA) were conducted after geometric calibration of satellite images which went through absolute and relative radiometric calibrations and change detection analysis was conducted using Image Difference (ID) and Image Rationing (IR). As a result, ID-NDVI showed excellent accuracy in change detection related to vegetation. ID-PCA showed 90% of accuracy in all areas. IR-NDVI had 90% of accuracy while it was 70% and below as for paddies and dry fields${\rightarrow}$grassland. IR-PCA had excellent change detection over all areas.

  • PDF

Depth Image Based Feature Detection Method Using Hybrid Filter (융합형 필터를 이용한 깊이 영상 기반 특징점 검출 기법)

  • Jeon, Yong-Tae;Lee, Hyun;Choi, Jae-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.395-403
    • /
    • 2017
  • Image processing for object detection and identification has been studied for supply chain management application with various approaches. Among them, feature pointed detection algorithm is used to track an object or to recognize a position in automated supply chain systems and a depth image based feature point detection is recently highlighted in the application. The result of feature point detection is easily influenced by image noise. Also, the depth image has noise itself and it also affects to the accuracy of the detection results. In order to solve these problems, we propose a novel hybrid filtering mechanism for depth image based feature point detection, it shows better performance compared with conventional hybrid filtering mechanism.

Implementation of Face Detection System on Android Platform for Real-Time Applications (실시간 응용을 위한 안드로이드 플랫폼에서의 안면 검출 시스템 구현)

  • Han, Byung-Gil;Lim, Kil-Taek
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.137-143
    • /
    • 2013
  • This paper describes an implementation of face detection technology for a real-time application on the Android platform. Java class of Face-Detection for detection of human face is provided by the Android API. However, this function is not suitable to apply for the real-time applications due to inadequate detection speed and accuracy. In this paper, the AdaBoost based classification method which utilizes Local Binary Pattern (LBP) histogram is employed for face detection. The face detection module has been developed by C/C++ language for high-speed image processing, and this module is included to the Android platform using the Java Native Interface (JNI). The experiments were carried out in the Java-based environment and JNI-based environment. The experimental results have shown that the performance of JNI-based is faster than Java-based method and our system is well enough to apply for real-time applications.

A Multiple Features Video Copy Detection Algorithm Based on a SURF Descriptor

  • Hou, Yanyan;Wang, Xiuzhen;Liu, Sanrong
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.502-510
    • /
    • 2016
  • Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.

A New Anchor Shot Detection System for News Video Indexing

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.133-138
    • /
    • 2008
  • In this paper, we propose a novel anchor shot detection system, named to MASD (Multi-phase Anchor Shot Detection), which is a core step of the preprocessing process for the news video analysis. The proposed system is composed of four modules and operates sequentially: 1) skin color detection module for reducing the candidate face regions; 2) face detection module for finding the key-frames with a facial data; 3) vector representation module for the key-frame images using a non-negative matrix factorization; 4) one class SVM module for determining the anchor shots using a support vector data description. Besides the qualitative analysis, our experiments validate that the proposed system shows not only the comparable accuracy to the recently developed methods, but also more faster detection rate than those of others.

Intelligent Intrusion Detection Systems Using the Asymmetric costs of Errors in Data Mining (데이터 마이닝의 비대칭 오류비용을 이용한 지능형 침입탐지시스템 개발)

  • Hong, Tae-Ho;Kim, Jin-Wan
    • The Journal of Information Systems
    • /
    • v.15 no.4
    • /
    • pp.211-224
    • /
    • 2006
  • This study investigates the application of data mining techniques such as artificial neural networks, rough sets, and induction teaming to the intrusion detection systems. To maximize the effectiveness of data mining for intrusion detection systems, we introduced the asymmetric costs with false positive errors and false negative errors. And we present a method for intrusion detection systems to utilize the asymmetric costs of errors in data mining. The results of our empirical experiment show our intrusion detection model provides high accuracy in intrusion detection. In addition the approach using the asymmetric costs of errors in rough sets and neural networks is effective according to the change of threshold value. We found the threshold has most important role of intrusion detection model for decreasing the costs, which result from false negative errors.

  • PDF

A Study on Multi-level Attack Detection Technique based on Profile Table (프로파일 기반 다단계 공격 탐지 기법에 관한 연구)

  • Yang, Hwan Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.89-96
    • /
    • 2014
  • MANET has been applied to a wide variety of areas because it has advantages which can build a network quickly in a difficult situation to build a network. However, it is become a victim of malicious nodes because of characteristics such as mobility of nodes consisting MANET, limited resources, and the wireless network. Therefore, it is required to lightweight attack detection technique which can accurately detect attack without causing a large burden to the mobile node. In this paper, we propose a multistage attack detection techniques that attack detection takes place in routing phase and data transfer phase in order to increase the accuracy of attack detection. The proposed attack detection technique is composed of four modules at each stage in order to perform accurate attack detection. Flooding attack and packet discard or modify attacks is detected in the routing phase, and whether the attack by modification of data is detected in the data transfer phase. We assume that nodes have a public key and a private key in pairs in this paper.