• 제목/요약/키워드: Detection Key

Search Result 1,206, Processing Time 0.032 seconds

Demonstration of Optimizing the CFAR Threshold for Development of GMTI System (GMTI 시스템 개발을 위한 CFAR 임계치 최적화)

  • Kim, So-Yeon;Yoon, Sang-Ho;Shin, Hyun-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.141-146
    • /
    • 2018
  • The Ground Moving Target Indication(GMTI) technique can detect the moving targets on land using its Doppler returns. Also, the GMTI system can work in night regardless of the weather condition because it is an active sensor that uses the electromagnetic waves as its source. In order to develop the GMTI system, Constant False Alarm Rate(CFAR) threshold optimization is important because the main performances like detection probability, false alarm rate and Minimum Detectable Velocity(MDV) are related deeply with CFAR threshold. These key variables are used to calculate CFAR threshold and then trade-off between the variables is performed. In this paper, CFAR threshold optimization procedures are introduced, and the optimization results are demonstrated.

PC-Camera based Monitoring for Unattended NC Machining (무인가공을 위한 PC 카메라 기반의 모니터링)

  • Song, Shi-Yong;Ko, Key-Hoon;Choi, Byoung-Kyu
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • In order to make best use of NC machine tools with minimal labor costs, they need to be in operation 24 hours a day without being attended by human operators except for setup and tool changes. Thus, unattended machining is becoming a dream of every modern machine shop. However, without a proper mechanism for real-time monitoring of the machining processes, unattended machine could lead to a disaster. Investigated in this paper are ways to using PC camera as a real-time monitoring system for unattended NC milling operations. This study defined five machining states READY, NORMAL MACHINING, ABNORMAL MACHINING, COLLISION and END-OF-MACHINING and modeled them with DEVS (discrete event system) formalism. An image change detection algorithm has been developed to detect the table movements and a flame and smoke detection algorithm to detect unstable cutting process. Spindle on/off and cutting status could be successfully detected from the sound signals. Initial experimentation shows that the PC camera could be used as a reliable monitoring system for unattended NC machining.

Improvement of ATIS Model Performance under Connected Vehicle Environment

  • Kim, Hoe-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2012
  • This paper develops a decentralized advanced traveler information system (ATIS) under the connected vehicle environment, recently regarded as one of most promising tools in Intelligent Transportation Systems (ITS). The performance of the proposed ATIS is reinforced by introducing autonomous automatic incident detection (AAID) function. The proposed ATIS is implemented and tested using an off-the-shelf microscopic simulation model (VISSIM) on a simple traffic network under idealized communication conditions. A key attribute of this experiment is the inclusion of a non-recurrent traffic state (i.e., traffic incident). Simulation results indicate that the ATIS using V2V communication is efficient in saving drivers' travel time and AAID plays an important role in improving the effectiveness of the system.

Urinalysis Screening Application based on Smartphone (스마트폰 기반 요검사 스크리닝 애플리케이션)

  • Baek, Seung-Hyeok;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.95-102
    • /
    • 2021
  • The urinalysis, which is universally accessible to the general public, has disadvantages of being less objective using sight and purchasing a separate portable urinalysis machine. However, due to the high penetration rate and performance improvement of smartphone created by the development of mobile communication technology, research on urinalysis services using smartphone has been conducted. In this paper, a new urinalysis screening application based on smartphone was developed by supplementing the limitations of the previously studied urinalysis services. The key technology of the application is urinalysis recognition algorithm and urinalysis pad color determination algorithm through image-processing and contour detection. In order to confirm the performance of the developed application, urinalysis strip was photographed and analyzed from various backgrounds and angles.

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

Breast Tumor Cell Nuclei Segmentation in Histopathology Images using EfficientUnet++ and Multi-organ Transfer Learning

  • Dinh, Tuan Le;Kwon, Seong-Geun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1000-1011
    • /
    • 2021
  • In recent years, using Deep Learning methods to apply for medical and biomedical image analysis has seen many advancements. In clinical, using Deep Learning-based approaches for cancer image analysis is one of the key applications for cancer detection and treatment. However, the scarcity and shortage of labeling images make the task of cancer detection and analysis difficult to reach high accuracy. In 2015, the Unet model was introduced and gained much attention from researchers in the field. The success of Unet model is the ability to produce high accuracy with very few input images. Since the development of Unet, there are many variants and modifications of Unet related architecture. This paper proposes a new approach of using Unet++ with pretrained EfficientNet as backbone architecture for breast tumor cell nuclei segmentation and uses the multi-organ transfer learning approach to segment nuclei of breast tumor cells. We attempt to experiment and evaluate the performance of the network on the MonuSeg training dataset and Triple Negative Breast Cancer (TNBC) testing dataset, both are Hematoxylin and Eosin (H & E)-stained images. The results have shown that EfficientUnet++ architecture and the multi-organ transfer learning approach had outperformed other techniques and produced notable accuracy for breast tumor cell nuclei segmentation.

A New Distributed Log Anomaly Detection Method based on Message Middleware and ATT-GRU

  • Wei Fang;Xuelei Jia;Wen Zhang;Victor S. Sheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.486-503
    • /
    • 2023
  • Logs play an important role in mastering the health of the system, experienced operation and maintenance engineer can judge which part of the system has a problem by checking the logs. In recent years, many system architectures have changed from single application to distributed application, which leads to a very huge number of logs in the system and manually check the logs to find system errors impractically. To solve the above problems, we propose a method based on Message Middleware and ATT-GRU (Attention Gate Recurrent Unit) to detect the logs anomaly of distributed systems. The works of this paper mainly include two aspects: (1) We design a high-performance distributed logs collection architecture to complete the logs collection of the distributed system. (2)We improve the existing GRU by introducing the attention mechanism to weight the key parts of the logs sequence, which can improve the training efficiency and recognition accuracy of the model to a certain extent. The results of experiments show that our method has better superiority and reliability.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Fissile Measurement in Various Types Using Nuclear Resonances

  • YongDeok Lee;Seong-Kyu Ahn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.235-246
    • /
    • 2023
  • Neutron resonance transmission technique was applied for assaying isotopic fissile materials produced in the pyro-process. In each process of the pyro-process, a different composition of the fissile material is produced. Simulation was basically performed on 235U and 239Pu assay for TRU-RE product, hull waste, and uranium addition. The resonance energies were evaluated for uranium and plutonium in the simulation, and the linearity in the detection response was examined on the fissile content variation. The linear resonance energies were determined for the analysis of 235U and 239Pu on the different fissile materials. For enriched TRU-RE assay, the sample condition was suggested; The sample density, content, and thickness are the key factors to obtain accurate fissile content. The detection signal is discriminated for uranium and plutonium in neutron resonance technique. The transmitted signal for fissile resonance has a direct relation with the content of fissile. The simulation results indicated that the neutron resonance technique is promising to analyze 235U and 239Pu for various types of the pyro-process material. An accurate fissile assay will contribute toward safeguarding the pyro-processing system.