• 제목/요약/키워드: Detection/Identification

검색결과 1,762건 처리시간 0.035초

영상 객체인식기법을 활용한 지능형 영상검지 시스템 (Intelligent Video Event Detection System Used by Image Object Identification Technique)

  • 정상진;김정중;이동영;조성제;김국보
    • 한국멀티미디어학회논문지
    • /
    • 제13권2호
    • /
    • pp.171-178
    • /
    • 2010
  • 무인감시시스템은 무선 칩 같은 기초적인 센서를 이용하는 분야는 많이 연구 되어 왔으며. 카메라를 주요 센서로 하는 영상감시체계 연구 분야가 활성화 되고 있다. 본 논문에서는 다양한 영상검지기법을 조사 분석한 결과를 토대로 영상 객체 인식 기법을 적용한 지능형 영상검지 시스템을 제안하였다. 이 지능형 영상검지 시스템은 사건 전후의 상황을 쉽게 추적 판단 할 수 있으며, 확실한 증거와 다양한 정보를 확보 할 수 있다. 따라서 본 논문에서 제안하는 지능형 영상 검지 시스템은 교통상황 관리, 재난 경보 등 다양한 무인감시시스템에 활용 될 것이다.

Advances in Rapid Detection Methods for Foodborne Pathogens

  • Zhao, Xihong;Lin, Chii-Wann;Wang, Jun;Oh, Deog Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권3호
    • /
    • pp.297-312
    • /
    • 2014
  • Food safety is increasingly becoming an important public health issue, as foodborne diseases present a widespread and growing public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens are some of the most effective ways to control and prevent human foodborne infections. Traditional microbiological detection and identification methods for foodborne pathogens are well known to be time consuming and laborious as they are increasingly being perceived as insufficient to meet the demands of rapid food testing. Recently, various kinds of rapid detection, identification, and monitoring methods have been developed for foodborne pathogens, including nucleic-acid-based methods, immunological methods, and biosensor-based methods, etc. This article reviews the principles, characteristics, and applications of recent rapid detection methods for foodborne pathogens.

A numerical study on vibration-based interface debonding detection of CFST columns using an effective wavelet-based feature extraction technique

  • Majid Gholhaki;Borhan Mirzaei;Mohtasham Khanahmadi;Gholamreza Ghodrati Amiri;Omid Rezaifar
    • Steel and Composite Structures
    • /
    • 제53권1호
    • /
    • pp.45-59
    • /
    • 2024
  • This paper aims to investigate the impact of interfacial debonding on modal dynamic properties such as frequencies and vibration mode shapes. Furthermore, it seeks to identify the specific locations of debonding in rectangular concrete-filled steel tubular (CFST) columns during the subsequent stage of the study. In this study, debonding is defined as a reduction in the elasticity modulus of concrete by a depth of 3 mm at the connection point with the steel tube. Debonding leads to a lack of correlation between primary and secondary shapes of vibration modes and causes a reduction in the natural frequency in all modes. However, directly comparing changes in vibration responses does not allow for the identification of debonding locations. In this study, a novel irregularity detection index (IDI) is proposed based on modal signal processing via the 2D wavelet transform. The suggested index effectively reveals relative irregularity peaks in the form of elevations at the debonding locations. As the severity of damage increases at a specific debonding location, the relative irregularity peaks would increase only at that specific point; in other words, the detection or non-detection of a debonding location using IDI has minimal effects on the identification of other debonding locations.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

접촉점 표시를 통한 윤곽선 추적 및 돌기 형상 탐지 (Haptic Contour Following and Feature Detection with a Contact Location Display)

  • 박재영;윌리엄 프로판쳐;데이비드 존슨;홍탄
    • 로봇학회논문지
    • /
    • 제8권3호
    • /
    • pp.206-216
    • /
    • 2013
  • We investigate the role of contact location information on the perception of local features during contour following in a virtual environment. An absolute identification experiment is conducted under force-alone and force-plus-contact-location conditions to investigate the effect of the contact location information. The results show that the participants identify the local features significantly better in terms of higher information transfer for the force-plus-contact-location condition, while no significant difference was found for measures of the efficacy of contour following between the two conditions. Further data analyses indicate that the improved identification of local features with contact location information is due to the improved identification of small surface features.

결함이 있는 판형교의 진동기초 손상검색을 위한 구조식별모델의 성능향상 (Performance Enhancement of System Identification Model for Vibration-Based Damage Detection in Flawed Plate-Girder Bridges)

  • 백종훈;김정태;류연선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.443-450
    • /
    • 2003
  • System identification techniques can be used to build a baseline modal model for a flawed structure that has no modal information on its as-built state. The accuracy of a system identification proposed by Stubbs and Kim is analyzed for plate-girder bridges and its impact on the accuracy of damage detection in those structures is also analyzed. A laboratory-scale model plate-girder is experimentally tested and the initial four bending modes are examined for certain damage scenarios. The performance of individual baseline modal models is assessed by detecting damage in the model structure.

  • PDF

3.4급 알칼로이드의 검출에 의한 현호색의 확인 (The Identification of Corydalis Tuber by Detecting of Tertiary and Quaternary Alkaloids)

  • 김대근;김기덕;엄동옥
    • 생약학회지
    • /
    • 제30권1호
    • /
    • pp.54-58
    • /
    • 1999
  • A method using coloric and spectrophotometric detection have been developed for the identification of the tertiary or quaternary alkaloids contained in Corydalis tuber and its preparations. The principle is based on the formation or decomposition of complex compounds. The complex compound of the tertiary and quaternary alkaloids have been formed by adding tetrathiocyanatocobaltate [II] ion to the test soln. Diverse crude drugs were screened using this method and the results indicated that isoquinoline, aconitine-type alkaloids in crude drugs can be readily detected. The method is simple, convenient, reproducible and applicable to the verification of the crude drug Corydalis tuber and its preparations.

  • PDF

미지입력을 포함한 시스템의 관측기 기반 견실고장진단 및 재구성 적응제어 (Observer-Based Robust Fault Diagnosis and Reconfigurable Adaptive Control for Systems with Unknown Inputs)

  • 최재원;이승우;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.928-934
    • /
    • 2002
  • A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.

Rapid Identification of Vibrio vulnificus in Seawater by Real-Time Quantitative TaqMan PCR

  • Wang, Hye-Young;Lee, Geon-Hyoung
    • Journal of Microbiology
    • /
    • 제41권4호
    • /
    • pp.320-326
    • /
    • 2003
  • In order to identify Vibrio vulnificus in the Yellow Sea near Gunsan, Korea during the early and late summers, the efficiency of the real-time quantitative TaqMan PCR was compared to the efficiency of the conventional PCR and Biolog identification system^TM. Primers and a probe were designed from the hemolysin/cytolysin gene sequence of V. vulnificus strains. The number of positive detections by real-time quantitative TaqMan PCR, conventional PCR, and the Biolog identification system from seawater were 53 (36.8%), 36 (25%), and 10 strains (6.9%), respectively, among 144 samples collected from Yellow Sea near Gunsan, Korea. Thus, the detection method of the real-time quantitative TaqMan PCR assay was more effective in terms of accuracy than that of the conventional PCR and Biolog system. Therefore, our results showed that the real-time TaqMan probe and the primer set developed in this study can be applied successfully as a rapid screening tool for the detection of V. vulnificus.

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.