• Title/Summary/Keyword: Detecting Effect

Search Result 506, Processing Time 0.027 seconds

Antireflection Layer Coating for the Red Light Detecting Si Photodiode (적색검출 Si 포토다이오드의 광반사 방지막 처리)

  • Chang, Gee-Keun;Hwang, Yong-Woon;Cho, Jae-Uk;Yi, Sang-Yeoul
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.389-393
    • /
    • 2003
  • The effect of antireflection layer on the reduction of optical loss has been investigated in Si photodiodes detecting red light with central wavelength of 670 nm. The theoretical analysis showed minimum reflection loss of 6% for the $SiO_2$thickness of about $1100∼1200\AA$ in the $SiO_2$-Si system with the single antireflection layer and no reflection loss for the X$N_3$N$_4$$SiO_2$thickness of $2000\AA$/$1200\AA$ in the $Si_3$$N_4$$SiO_2$-Si system with double antireflection layer. In our experiments, Si photodiodes with the web-patterned $p^{+}$-shallow diffusion region were fabricated by bipolar IC process technology and the devices were classified into three kinds according to the structure of $Si_3$$N_4$/$SiO_2$antireflection layer. The fabricated devices showed maximum spectral response in the optical spectrum of 650∼700 nm. The average photocurrents of the devices with the $Si_3$$N_4$$SiO_2$thickness of $1000\AA$/X$SiO\AA$, and $2000\AA$$1800\AA$ under the incident power, of -17 dBm were 3.2 uA, 3.5 uA and 3.1 uA, respectively.

3D Point Clouds Encryption Method and Analysis of Encryption Ratio in Holographic Reconstruction Image (3D 공간정보 암호화 기법과 홀로그래픽 복원영상의 암호화 효율 분석)

  • Choi, Hyun-Jun;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1703-1710
    • /
    • 2017
  • This paper propose a 3D point clouds (depth) security technique for digital holographic display service. Image contents encryption is a method to provide only authorized right owners with the original image information by encrypting the entire image or a part of the image. The proposed method detected an edge from a depth and performed quad tree decomposition, and then performed encryption. And encrypts the most significant block among the divided blocks. The encryption effect was evaluated numerically and visually. The experimental results showed that encrypting only 0.43% of the entire data was enough to hide the constants of the original depth. By analyzing the encryption amount and the visual characteristics, we verified a relationship between the threshold for detecting an edge-map. As the threshold for detecting an edge increased, the encryption ratio decreased with respect to the encryption amount.

Detection Algorithm for Information on Approach or Deviation of Objects Using CW Doppler Radar and FFT (CW 도플러 레이더와 FFT를 이용한 물체의 접근 이탈 정보 판단 알고리즘)

  • Shin, Hyun-Jun;Han, Byung-Hun;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.999-1001
    • /
    • 2015
  • CW Doppler radar is capable of giving the relative velocity of an object using the Doppler effect. When detecting more than an object, frequency domain analysis is needed using CW Doppler radar and FFT. Even though the number of objects and velocities can be obtained within the frequency domain, there is a disadvantage that it is difficult to assess information on approach or deviation of an object. When detecting more than an object using FFT, this study suggests an algorithm for efficiently assessing information about approach or deviation of objects within the frequency domain. The proposed algorithm divides sections into real and imaginary numbers in the frequency domain, and then determines deviation if the total sum of the amplitudes of each frequency is on the left side and approach if the total sum of the amplitudes is on the right side.

  • PDF

The Detection Characterization of NOX Gas Using the MWCNT/ZnO Composite Film Gas Sensors by Heat Treatment (열처리에 따른 MWCNT/ZnO 복합체 필름 가스센서의 NOX 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-526
    • /
    • 2018
  • In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. In this study, we fabricated a $NO_X$ gas sensor by using a multi-walled carbon nanotube (MWCNT)/zinc oxide (ZnO) composite film. The fabricated MWCNT/ZnO gas sensor was then treated by a $450^{\circ}C$ temperature process to increase its detection sensitivity for NOx gas. We compared the detection characteristics of a ZnO film gas sensor, MWCNT film gas sensor, and the MWCNT/ZnO composited film gas sensor with and without the heat-treatment process. The fabricated gas sensors were used to detect $NO_X$ gas at different concentrations. The gas sensor absorbed $NO_X$ gas molecules, exhibiting increased sensitivity. The sensitivity of the gas sensor was increased by increasing the gas concentration. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained its sensitivity for detecting $NO_X$ gas. Compared with ZnO, the MWCNT film gas sensor is excellent for detecting $NO_X$ gas. From the experimental results, we confirmed the enhanced gas sensor sensing mechanism. The increased effect by electronic interaction between the MWCNT and ZnO films contributes to the improved sensor performance.

A Study on the Improvement of Sensing Ability of ZnO Varistor-type Gas Sensors (ZnO 바리스터형 가스 센서의 감도 향상에 관한 연구)

  • 한세원;조한구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.271-274
    • /
    • 2000
  • Gas sensor materials capable of detecting hydrogen gases (H$_2$) or nitrogen oxides (NO$\_$x/, primarily NO and NO$_2$) with high sensitivity have attracted much interest in conjunction with the growing concern to the protection of global environments. Beside conventional sensor materials, such as semiconductors., conducting polymers and solid electrolytes, the potential of sensor materials with a new method for detecting hydrogen gases or nitrogen oxides gas has also been tested. The breakdown voltage of porous varistors shifted to a low electric field upon exposure to H$_2$ gas, whereas it shifted to a reverse direction in an atmosphere containing oxidizing gases such as O$_3$ and NO$_2$ in the temperature range of 300 to 600$^{\circ}C$. Furthermore, it was found that the magnitude of the breakdown voltage shift, i. e. the magnitude of sensitivity, was well correlated with gas concentration, and that the H$_2$ sensitivity was improved by controlling the composition of the Bi$_2$O$_3$ rich grain boundary phase. However, NO$\_$x/ sensing properties of porous varistors have not been studies in detail. The objective of the present study is to investigate the effect of the composition of the Bi$_2$O$_3$ rich grain boundary phase and other additive such as A1$_2$O$_3$ on the hydrogen gases (H$_2$) sensing properties of porous ZnO based varistors.

  • PDF

Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors (삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시)

  • Lee, Dong-Chun;Lee, Jung-Ju;Seo, Dae-Cheol;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2001
  • In this study, the effects of embedded optical fibers on the static properties under tensile load and dynamic properties under fatigue load of composite laminates were investigated by experimental tests and finite element analysis. Based on the results, it can be concluded that the embedded optical fiber sensors do not have significant effects on the structural integrity of the smart composite structures except when the sensors are embedded perpendicular to the adjacent reinforcing fibers under fatigue loading. An intensity-based optical fiber sensor was embedded in the crossply composite laminates to monitor the fatigue damage by detecting the stiffness changes of the laminates. The result of this experiment has shown that the intensity-based optical fiber sensor has large potential to monitor the fatigue damage of composite structures by detecting the stiffness changes of the structures with simple and inexpensive instruments and without complex post-processing of measured signals. In addition, the optical fiber sensor showed good resistance to fatigue loading and wide sensing ranges of stiffness.

  • PDF

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.

Performance of the BD MAX MDR-TB assay in a clinical setting and its impact on the clinical course of patients with pulmonary tuberculosis: a retrospective before-after study

  • Sung Jun Ko;Kui Hyun Yoon;Sang Hee Lee
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • Background: Missing isoniazid (INH) resistance during tuberculosis (TB) diagnosis can worsen the outcomes of INH-resistant TB. The BD MAX MDR-TB assay (BD MAX) facilitates the rapid detection of TB and INH and rifampin (RIF) resistance; however, data related to its performance in clinical setting remain limited. Moreover, its effect on treatment outcomes has not yet been studied. Methods: We compared the performance of BD MAX for the detection of INH/RIF resistances to that of the line probe assay (LPA) in patients with pulmonary TB (PTB), using the results of a phenotypic drug sensitivity test as a reference standard. The treatment outcomes of patients who used BD MAX were compared with those of patients who did not. Results: Of the 83 patients included in the study, the BD MAX was used for an initial PTB diagnosis in 39 patients. The sensitivity of BD MAX for detecting PTB was 79.5%. The sensitivity and specificity of BD MAX for INH resistance were both 100%, whereas these were 50.0% and 95.8%, respectively, for RIF resistance. The sensitivity and specificity of BD MAX were comparable to those of LPA. The BD MAX group had a shorter time interval from specimen request to the initiation of anti-TB drugs (2.0 days vs. 5.5 days, p=0.001). Conclusion: BD MAX showed comparable performance to conventional tests for detecting PTB and INH/RIF resistances. The implementation of BD MAX as a diagnostic tool for PTB resulted in a shorter turnaround time for the initiation of PTB treatment.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation

  • Ma, Ji-wei;Zhang, Yong;Ye, Ji-cheng;Li, Ru;Wen, Yu-Lin;Huang, Jian-xian;Zhong, Xue-yun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.186-193
    • /
    • 2017
  • Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase.