• Title/Summary/Keyword: Detect3D

Search Result 828, Processing Time 0.028 seconds

The Algorithm of Protein Spots Segmentation using Watersheds-based Hierarchical Threshold (Watersheds 기반 계층적 이진화를 이용한 단백질 반점 분할 알고리즘)

  • Kim Youngho;Kim JungJa;Kim Daehyun;Won Yonggwan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.239-246
    • /
    • 2005
  • Biologist must have to do 2DGE biological experiment for Protein Search and Analysis. This experiment coming into being 2 dimensional image. 2DGE (2D Gel Electrophoresis : two dimensional gel electrophoresis) image is the most widely used method for isolating of the objective protein by comparative analysis of the protein spot pattern in the gel plane. The process of protein spot analysis, firstly segment protein spots that are spread in 2D gel plane by image processing and can find important protein spots through comparative analysis with protein pattern of contrast group. In the algorithm which detect protein spots, previous 2DGE image analysis is applies gaussian fitting, however recently Watersheds region based segmentation algorithm, which is based on morphological segmentation is applied. Watersheds has the benefit that segment rapidly needed field in big sized image, however has under-segmentation and over-segmentation of spot area when gray level is continuous. The drawback was somewhat solved by marker point institution, but needs the split and merge process. This paper introduces a novel marker search of protein spots by watersheds-based hierarchical threshold, which can resolve the problem of marker-driven watersheds.

Determination of N-nitrosamines in Water by Gas Chromatography Coupled with Electron Impact Ionization Tandem Mass Spectrometry (EI-GC/MS/MS를 이용한 니트로사민류의 수질분석)

  • Lee, Ki-Chang;Park, Jae-Hyung;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.764-770
    • /
    • 2014
  • This study assessed analysis of N-nitrosamines by separation, identification, and quantification using a gas chromatography (GC) mass spectrometer (MS) with electron impact (EI) mode. Samples were pretreated by a automated solid phase extraction (SPE) and a nitrogen concentration technique to detect low concentration ranges. The analysis results by EI-GC/MS (SIM) and EI-GC/MS/MS (MRM) on standard samples with no pretreatment exhibited similar results. On the other hand, the analysis of pretreated samples at low concentrations (i.e. ng/L levels) were not reliable with a EI-GC/MS due to the interferences from impurity peaks. The method detection limits of eight (8) N-nitrosamines by EI-GC/MS/MS analysis ranged from 0.76 to 2.09 ng/L, and the limits of quantification ranged from 2.41 to 6.65 ng/L. The precision and accuracy of the method were evaluated using spiked samples at concentrations of 10, 20 and 100 ng/L. The precision were 1.2~13.6%, and the accuracy were 80.4~121.8%. The $R^2$ of the calibration curves were greater than 0.999. The recovery rates for various environmental samples were evaluated with a surrogate material (NDPA-$d_{14}$) and ranged 86.2~122.3%. Thus, this method can be used to determine low (ng/L) levels of N-nitrosamines in water samples.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Cone Resistivity Penetrometer for Detecting Thin-Layered Soils (협재층 탐지를 위한 선단비저항 콘)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Kim, Rae-Hyun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.15-25
    • /
    • 2010
  • The thin-layered sand seam in clay affects the soil behavior. Although the standard cone penetrometer (A: $10cm^2$) have been used to evaluate the thin-layered soil, the smaller diameter cone penetrometer have been commonly recommended because of the high resolution. The purpose of this study is the development and application of the Cone Resistivity Penetrometer (CRP), which detects qc, fs, and electrical resistivity at cone tip for the evaluation of thin layered soils. Two sizes of the CRP are developed for the laboratory and field test. The projected areas of CRP for the laboratory and field tests are $0.78cm^2$ (d: 1.0 cm) and $1.76cm^2$ (d: 1.5 cm), repectively. The length of friction sleeve is designed in consideration of ratio of the projected area to the friction sleeve area. The application tests are carried out by using the artificially prepared thin-layered soils in the laboratory. In addition, the field tests are conducted at the depth of 6 to 15 m in Kwangyang. In the laboratory test, the measured electrical resistivity and cone tip resistance detect the soil layers. Moreover, in the field test the CRP investigates the three thin-layered soils. This study suggests that the CRP may be a useful tool for detecting thin-layered in soft soils.

A Study on the Characteristics of Echolocation Signals of the Common Dolphin, Delphinus Delphis (참돌고래의 반향정위 신호특성에 관한 연구)

  • 신형일;윤갑동;신현옥;최한규;박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.189-195
    • /
    • 2001
  • The characteristics of echolocation signals of the Common Dolphin, Delphinus Delphis was observed by the hydrophone in order to detect exactly distribution and migration on whales and dolphins in Korean Coastal waters. It's observation was carried out at the position of 13 mm off Gam-Po of Korean east-southern sea at 3rd-5th. April and 13th-15th. October, 1999. The results obtained are summarized as follows: (1) The frequency range of ship's noise and ambient noise in the observed station was 0.5-0.3 kHz, that ones could be influenced to the behavior of common dolphins which carry out echolocation using low-frequency. (2) The common dolphin was radiated single click of 8.6 ms and double click of 4.8 ms pulse width during these observation (3) The high click frequencies of common dolphin were 5.10 kHz, 7.22 kHz, 10.60 kHz with the click pulse width of 4.0 ms, 2.6 ms, 1.0 ms, respectively. In case of low-frequency 1-2 kHz, that is, 1.12 kHz, 1.38 kHz, 1.82 kHz, pulse width were 22.4 ms, 2.05 ms, 11.9 ms, respectively and they showed a tendency using triple click signal. (4) The pulse width, pulse recurrence interval and frequency range of the observed echolocation signals were 2.4-8.4 ms, 9.0-40.0 ms, 0.60-10.63 kHz respectively, and frequency spectrum level was 100-125 dB for single, double, triple click signals.

  • PDF

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

A Development of Semi-automatic Trawl-net Surfaces Reconstruction System using Motion Equations and User Interactions (운동 방정식과 사용자 상호작용을 적용한 반자동 트롤 그물 표면 재구축 시스템 개발)

  • Yoon, Joseph;Park, Keon-Kuk;Kwon, Oh-Seok;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1447-1455
    • /
    • 2017
  • In a trawl-net simulation, it is very important to process the physical phenomenons resulting from real collisions between a net and fishes. However, because it is very difficult to reconstruct the surface with mass points, many researchers have generally detect the collision using an approximation model employing a sphere, a cube or a cylinder. These approaches occur often result in inaccurate movements of a fish due to the difference between a real-net and a designed-net. So, many systems have manually adjusted a net surface based on actual measurements of mass points. These methods are very inefficient because it needs much times in an adjustment and also causes more incorrect inputs according to a rapid increment in the number of points. Therefore, in this paper, we propose a reconstruction method that it semi-automatically reconstructed trawl-net surfaces using the equation of motion at each mass point in a mass-spring model. To get an easy start in a beginning step of the spread, it enables users to get interactive adjustment on each mass point. We had designed a trawl-net model using geometrical structures of trawl-net and then automatically reconstructed the trawl-net surface using scale-space meshing techniques. Last, we improve the accuracy of reconstructed result by correction user interaction.

Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene

  • Pruthviraj, D.R.;Usha, A.P.;Venkatachalapathy, R.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.315-320
    • /
    • 2016
  • Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5'-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity.

Control of an Artificial Arm using Flex Sensor Signal (굽힘 센서신호를 이용한 인공의수의 제어)

  • Yoo, Jae-Myung;Kim, Young-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.738-743
    • /
    • 2007
  • In this paper, a muscle motion sensing system and an artificial arm control system are studied. The artificial arm is for the people who lost one's forearm. The muscle motion sensing system detect the intention of motion from the upper arm's muscle. In sensing system we use flex sensors which is electrical resistance type sensor. The sensor is attached on the biceps brachii muscle and coracobrachialis muscle of the upper arm. We propose an algorithm to classify the one's intention of motions from the sensor signal. Using this algorithm, we extract the 4 motions which are flexion and extension of the forearm, pronation and supination of the arm. To verify the validity of the proposed algorithms we made experiments with two d.o.f. artificial arm. To reduce the control errors of the artificial arm we also proposed a fuzzy PID control algorithm which based on the errors and error rate.

Development of Radiation Dosimeter on P Channel Power MOSFET for $\gamma$-rays Real-Time Detection ($\gamma$선 실시간 검출을 위한 P채널 Power MOSFET 방사선 선량 시스템 개발)

  • Han, Sang-Hyun;Ji, Yong-Kun;Kwon, O-Sang;Min, Hong-Ki;Lee, Eung-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.213-223
    • /
    • 2000
  • It is necessary that radiation dose would be detect exactly generated from facility related to nuclear, space, radiotherapy center, etc. This paper is to use of the radiation-induced threshold voltage change as an accumulated radiation dose monitoring sensor. Commercial P Channel Power MOSFET(metal oxide field effect transistor) were tested in a Co-60 gamma irradiation facility to see their capabilities as a radiation dosimeter. We found that the transistors showed good linearity in their threshold voltage shift characteristics with radiation dose. The results demonstrate the potential use of commercial P Channel Power MOSFET as inexpensive radiation sensors.

  • PDF