• Title/Summary/Keyword: Detect microphone

Search Result 53, Processing Time 0.019 seconds

Widerange Microphone System for Lecture using FMCW Radar Sensor (FMCW 레이더 센서 기반의 강의용 광역 마이크 시스템)

  • Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.611-614
    • /
    • 2021
  • In this paper, we propose a widerange array microphone for lecturer tracked with Frequency Modulated Continuous Waveform (FMCW) radar sensor. Time Difference-of-Arrival (TDoA) is often used as audio tracking, but the tracking accuracy is poor because the frequency of the voice is low and the relative frequency change is large. FMCW radar has a simple structure and is used to detect obstacles for vehicles, and the resolution can be archived to several centimeter. It is shown that the sensor is useful for detecting a speaker in open area such as a lecture, and we propose an wide range 4-element array microphone beamforming system. Through some experiments, the proposed system is able to adequately track the location and showed a 8.6dB improvement over the selection of the best microphone.

Microphone-Based Whisker Tactile Sensors Modeling Rodent Whiskers (쥐 수염 센서를 모델로 하는 수염 촉각 센서 연구)

  • Baek, Seung-Hun;Kim, Dae-Eun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • Rodents, specially rats, can recognize distance and shape of an object and also pattern of the textures by using their whiskers. Mechanoreceptors surrounding the root of whisker in their follicle measure deflection of the whisker. Rats can move their whisker back and forth freely. This ability, called active whisking or active sensing, is one of characteristics of rat behaviours. Many researches based on the mechanism have been progressed. In this paper, we test a simple and accurate method based on deflection of the whisker: we designed biomimetic whiskers modeling after a structure of follicle using the microphone. The microphone sensor measures a mechanical vibration. Attaching an artificial whisker beam to the microphone membrane, we can detect a vibration of whisker and this can show the deflection amount of whisker indirectly.

  • PDF

Microphone Type Classification for Digital Audio Forgery Detection (디지털 오디오 위조검출을 위한 마이크로폰 타입 인식)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.323-329
    • /
    • 2015
  • In this paper we applied pattern recognition approach to detect audio forgery. Classification of the microphone types and models can help determining the authenticity of the recordings. Canonical correlation analysis was applied to extract feature for microphone classification. We utilized the linear dependence between two near-silence regions. To utilize the advantage of multi-feature based canonical correlation analysis, we selected three commonly used features to capture the temporal and spectral characteristics. Using three different microphones, we tested the usefulness of multi-feature based characteristics of canonical correlation analysis and compared the results with single feature based method. The performance of classification rate was carried out using the backpropagation neural network. Experimental results show the promise of canonical correlation features for microphone classification.

Development of Noise Source Detection System using Array Microphone in Power Plant Equipment (배열형 음향센서를 이용한 발전설비 소음원 탐지시스템 개발)

  • Sohn, Seok-Man;Kim, Dong-Hwan;Lee, Wook-Ryun;Koo, Jae-Raeyang;Hong, Jin-Pyo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • In this study, it has been initiated to investigate the specific abnormal vibration signal that has been captured in the power equipment. Array Microphone can be used in order to detect the direction and the position of the noise source. It is possible to track the abnormal mechanical noise in the power plant by utilizing the program and the microphone array system developed from this research. Array microphone system can be operated as a constant monitoring system.

Malfunction Detection of High Voltage Equipment Using Microphone Array and Infrared Thermal Imaging Camera (Microphone Array와 열화상 카메라를 이용한 고압설비 고장검출)

  • Han, Sun-Sin;Choi, Jae-Young;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • The paper proposes a hierarchical fault detection method for the high voltage equipment using a microphone array which detects the location of fault and the thermal imaging and CCD cameras which verifies the fault and stores the image, respectively. There are partial arc discharges on the faulty insulators, which generates a specific pattern of sound. Detecting the signal using the microphone array, the location of the faulty insulator can be estimated. The 6th band-pass filter was applied to remove noise signal from wind or external influence. When the mobile robot carries the thermal and CCD cameras to the possible place of the fault insulator, the fault insulators or power transmission wires can be detected by the thermal images, which are caused by the aging or natural erosion. Finally, the CCD camera captures the image of the fault insulator for the record. The detection scheme of fault location using the microphone array and the thermal images have been proved to be effective through the real experiments. As a result of this research, it becomes possible to use a mobile robot with the integrated sensors to detect the fault insulators instead of a human being.

The microphone system of the cellular phone for privately telephonic communication (속삭임 통화를 위한 휴대 전화용 마이크로폰 시스템)

  • 최성준;문원규;이정현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1335-1340
    • /
    • 2001
  • The information technology brought us many kinds of conveniences to our life, but it also caused social problems such as privacy interference, unexpected personal information leaks, and nose generation by telephonic talks, etc. In this paper, the microphone system of the cellular phone is developed to prevent these problems caused by progress of information technology. The developed system was designed to detect only acoustic signals from a human being in the presence of various kinds of background noises. A windscreen was designed by use of micro-channels to eliminate the popping noise by the wind from the mouth of a speaker and four microphone array and signal processing techniques are applied to reduce background noise. The impact of the developed system was evaluated by experimental tests. The results show that the system can improve the required functions considerably.

  • PDF

Optimal Acoustic Sound Localization System Based on a Tetrahedron-Shaped Microphone Array (정사면체 마이크로폰 어레이 기반 최적 음원추적 시스템)

  • Oh, Sangheon;Park, Kyusik
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • This paper proposes a new sound localization algorithm that can improve localization performance based on a tetrahedron-shaped microphone array. Sound localization system estimates directional information of sound source based on the time delay of arrival(TDOA) information between the microphone pairs in a microphone array. In order to obtain directional information of the sound source in three dimensions, the system requires at least three microphones. If one of the microphones fails to detect proper signal level, the system cannot produce a reliable estimate. This paper proposes a tetrahedron- shaped sound localization system with a coordinate transform method by adding one microphone to the previously known triangular-shaped system providing more robust and reliable sound localization. To verify the performance of the proposed algorithm, a real time simulation was conducted, and the results were compared to the previously known triangular-shaped system. From the simulation results, the proposed tetrahedron-shaped sound localization system is superior to the triangular-shaped system by more than 46% for maximum sound source detection.

Implementation of Real-time Sound-location Tracking Method using TDoA for Smart Lecture System (스마트 강의 시스템을 위한 시간차 검출 방식의 실시간 음원 추적 기법 구현)

  • Kang, Minsoo;Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.708-717
    • /
    • 2017
  • Tracking of sound-location is widely used in various area such as intelligent CCTV, video conference and voice commander. In this paper we introduce the real-time sound-location tracking method for smart lecture system using TDoA(Time Difference of Arrival) with orthogonal microphone array on the ceiling. Through discussion on some models of TDoA detection, cross correlation method using linear microphone array is proposed. Orthogonal array with 5 microphone could detect omni direction of sound-location. For real-time detection we adopt the threshold of received energy for eliminating no-voice interval, signed cross correlation for reducing computational complexity. The detected azimuth angles are processed using median filter for lowering the angle deviation. The proposed system is implemented with high performance MCU of TMS320F379D and MEMs microphone module and shows the accuracy of 0.5 and 6.5 in degree for white noise and lectured voice, respectively.

Detection of Cavities Behind Concrete Walls Using a Microphone (마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사)

  • Kang, Seonghun;Lee, Jong-Sub;Han, WooJin;Kim, Sang Yeob;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.19-28
    • /
    • 2022
  • Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.

The research on the MEMS device improvement which is necessary for the noise environment in the speech recognition rate improvement (잡음 환경에서 음성 인식률 향상에 필요한 MEMS 장치 개발에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1659-1666
    • /
    • 2018
  • When the input sound is mixed voice and sound, it can be seen that the voice recognition rate is lowered due to the noise, and the speech recognition rate is improved by improving the MEMS device which is the H / W device in order to overcome the S/W processing limit. The MEMS microphone device is a device for inputting voice and is implemented in various shapes and used. Conventional MEMS microphones generally exhibit excellent performance, but in a special environment such as noise, there is a problem that the processing performance is deteriorated due to a mixture of voice and sound. To overcome these problems, we developed a newly designed MEMS device that can detect the voice characteristics of the initial input device.