• Title/Summary/Keyword: Detailed Monitoring

Search Result 444, Processing Time 0.024 seconds

A Study on the Status and Improvement Plan of Alternative Habitats - Based on the Projects Subject to Environmental Impact Assessment - (대체서식지 조성 현황 및 개선방안 연구 - 환경영향평가 대상 사업을 중심으로 -)

  • Shim, Yun-Jin;Jung, Gyu-Jong;Eo, Yang-Joon;Ryu, Yoon-Jin;Park, Hyun-Kyung;Kim, Dong-Hwan;Cho, Young-Ho;Yoon, Ju-Duk;Woo, Seung-Hyun;Park, Su-Gon;Jang, Eun-Hye;Chu, Yun-Soo;Park, Yong-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • The intensive habitats loss of natural organisms as a consequence of anthropogenic activities has lead to the use of alternative habitats for species conservation. We reviewed the current status of alternative habitats and suggest the improvement of alternative habitats. Most of alternative habitats regarded in this study are not following the pre-arranged consultation at environmental impact assessment. These alternative habitats are rendered useless due to the insufficient consideration of ecological characteristics of species and lack of detailed plans. A number of alternative habitats are influenced by disturbance such as environmental pollution and construction. Post-monitoring of alternative habitats are needed to estimate immigration rate of species. Post management is also needed to assess the status of population stability. Overall, low effectiveness of alternative habitats is presented in this study. According to the status survey, methods for improvement of alternative habitats are required such as detailed guidelines, establishment of post-monitoring system, improvement of habitat restoration techniques, and guidelines for management and operation of alternative habitats.

Security Framework for Intelligent Predictive Surveillance Systems (지능형 예측감시 시스템을 위한 보안 프레임워크)

  • Park, Jeonghun;Park, Namje
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.77-83
    • /
    • 2020
  • Recently, intelligent predictive surveillance system has emerged. It is a system that can probabilistically predict the future situation and event based on the existing data beyond the scope of the current object or object motion and situation recognition. Since such intelligent predictive monitoring system has a high possibility of handling personal information, security consideration is essential for protecting personal information. The existing video surveillance framework has limitations in terms of privacy. In this paper, we proposed a security framework for intelligent predictive surveillance system. In the proposed method, detailed components for each unit are specified by dividing them into terminals, transmission, monitoring, and monitoring layers. In particular, it supports active personal information protection in the video surveillance process by supporting detailed access control and de-identification.

A review on sensors and systems in structural health monitoring: current issues and challenges

  • Hannan, Mahammad A.;Hassan, Kamrul;Jern, Ker Pin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.509-525
    • /
    • 2018
  • Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

세라믹 가스센서를 이용한 토양증기추출공정의 배출가스 모니터링 기법 연구

  • 양지원;조현정;이재영;곽무영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.250-252
    • /
    • 2002
  • The goals of environmental monitoring are to locate and quantify the significant contamination, estimate the fate and transport, estimate the potential exposure and risks to humans and the environment, and track the performance of various remedial technologies. In this study, ceramic gas sensor system is proposed to enhance the effectiveness of soil vapor extraction (SVE) process by monitoring the effluent gas. SVE is a technique that is widely used to remediate unsaturated soils contaminated with volatile organic contaminants. The sensor response for benzene, toluene, and xylene, the representative effluent gas compositions of SVE process, was evaluated using the proposed sensor system. As a result, it was verified that the response of sensor was increased or decreased very sensitively according to the change of the effluent gas concentration. Besides, the sensor could detect the difference over a wide range of concentration and it was more sensitive in order of xylene, toluene, and benzene. It is expected that this VOC analysis method results in field monitoring costs saying and appropriate immediate action for process control. More detailed experiments are being conducted in our research group.

  • PDF

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.

A novel recursive stochastic subspace identification algorithm with its application in long-term structural health monitoring of office buildings

  • Wu, Wen-Hwa;Jhou, Jhe-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.459-474
    • /
    • 2019
  • This study develops a novel recursive algorithm to significantly enhance the computation efficiency of a recently proposed stochastic subspace identification (SSI) methodology based on an alternative stabilization diagram. Exemplified by the measurements taken from the two investigated office buildings, it is first demonstrated that merely one sixth of computation time and one fifth of computer memory are required with the new recursive algorithm. Such a progress would enable the realization of on-line and almost real-time monitoring for these two steel framed structures. This recursive SSI algorithm is further applied to analyze 20 months of monitoring data and comprehensively assess the environmental effects. It is certified that the root-mean-square (RMS) response can be utilized as an excellent index to represent most of the environmental effects and its variation strongly correlates with that of the modal frequency. More detailed examination by comparing the monthly correlation coefficient discloses that larger variations in modal frequency induced by greater RMS responses would typically lead to a higher correlation.

Study on analog-based ex-core neutron flux monitoring systems of Korean nuclear power plants for digitization

  • Kim, Young Baik;Vista, Felipe P. IV;Chong, Kil To
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2237-2250
    • /
    • 2021
  • The analog-based Ex-core Neutron Flux Monitoring System (ENFMS) in Korean Nuclear Power Plants (NPPs) has been performing its intended functions successfully for a long time. On the other hand, the primary concern with the extended use of analog systems is the aging effect, such as mechanical failures, environmental degradation, and obsolescence. The transition to a digital-based Man-Machine Interface Systems (MMIS) in Korea and other countries has been accelerating, but some systems are still analog-based IC systems, such as the ENFMS in APR1400 NPPs. Digitalized ENFMS can become a reality using computers and microprocessors owing to the progress in digital electronics and information technology. This paper presents the result of the first phase of the research on the digitalization of the ENFMS signal processing electronics for NPPs operated or produced in Korea. It has two main parts: (1) review engineering bases of ex-core neutron flux monitoring system, including nuclear engineering, instrumentation techniques, and analog and digital signal processing techniques, and (2) analysis of analog signal processing electronics of ENFMS for OPR1000 and APR1400 power plants. They are prerequisite to the second phase of the research which is the detailed implementation of the digitalization.

Monitoring regional inequalities in climate change risk - A Focus on Heatwave - (기후변화 리스크의 지역 불평등 모니터링 : 폭염을 중심으로)

  • Kim, Geun-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.97-107
    • /
    • 2021
  • Abnormal climate caused by climate change causes enormous social and economic damage. And such damage and its impact may vary depending on the location and regional characteristics of the region and the social and economic conditions of local residents. Therefore, it is necessary to continuously monitor whether there are indicators that are weaker than other regions among the detailed indicators that constitute the risk, exposure and vulnerability of climate change risk. In this study, the concept of climate change risk was used for heatwave to determine regional inequality of climate change risk. In other words, it was judged that inequality in climate change risk occurred in regions with high risk but high exposure and low vulnerability compared to other regions. As a result of the analysis, it was found that 13 local governments in Korea experienced regional inequality in climate change risk. In order to resolve regional inequality in climate change risks, the current status of regional inequality in climate change should be checked based on the analysis proposed in this study, there is a need for an evaluation and monitoring system that can provide appropriate feedback on areas where inequality has occurred. This continuous evaluation and monitoring-based feedback system is expected to be of great help in resolving regional inequality in climate change risks.