• Title/Summary/Keyword: Detailed Design

Search Result 2,781, Processing Time 0.031 seconds

The Automotive Door Design with the ULSAB Concept Using Structural Optimization (구조 최적 설계기법을 이용한 ULSAB 개념의 자동차 도어 설계)

  • 신정규;송세일;이권희;박경진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.187-194
    • /
    • 2000
  • Weight reduction for an automobile body is being sought for the fuel efficiency and the energy conservation. One way of the efforts is adopting Ultra Light Steel Auto Body (ULSAB) concept. The ULSAB concept can be used for the light weight of an automobile door with the tailor welded blank (TWB). A design process is defined for the TWB. The inner panel of door is designed by the TWB and optimization. The design starts from an existing component. At first, the hinge and inner reinforcements are removed. In the conceptual design stage, topology optimization is conducted to find the distribution of variable thicknesses. The number of parts and the welding lines are determined from the topology design. In the detailed design process, size optimization is carried out to find thickness while stiffness constraints are satisfied. The final parting lines are determined by shape optimization.

  • PDF

Geotechnical Parameter Assessment for Tall Building Foundation Design

  • Poulos, Harry G.;Badelow, Frances
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.227-239
    • /
    • 2015
  • This paper discusses the design parameters that are required for the design of high-rise building foundations, and suggests that the method of assessment for these parameters should be consistent with the level of complexity involved for various stages in the design process. Requirements for effective ground investigation are discussed, together with relevant in-situ and laboratory test techniques for deriving the necessary strength and stiffness parameters. Some empirical correlations are also presented to assist in the early stages of design, and to act as a check for parameters that are deduced from more detailed testing. Pile load testing is then discussed and a method of interpreting bi-directional tests to obtain pile design parameters is outlined. Examples of the application of the assessment process are described, including high-rise projects in Dubai and Saudi Arabia.

A Study for the Parameters of Handling Performance in the Design of Suspension System (현가장치 설계시 주행성능 인자들에 대한 고찰)

  • 이형복;조규종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.121-132
    • /
    • 1996
  • As a new suspension is being designed, the designer should consider that the vehicle has a good ride and handling performance. It is not easy for a yound desigineer to decide the design parameters. In this study, the design process of a suspension system is described. the method of optimized design to achieve the target of vehicle performance from the initial layout to detailed design stage is also described. As a result, the effects of design parameters in the vehicle dynamic performance are mentioned by the synthesized program

  • PDF

A Study on the Design Criteria of Seismic and Wind Loads for Cylindrical Liquid Storage Steel Tanks (액체저장탱크의 지진하중과 풍하중 설계기준 고찰)

  • Lee N.H.;Oh T.Y.;An Z.O.;Choi S.Y.;Park J.Y.;Kim H.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1412-1415
    • /
    • 2005
  • Special considerations on the design of liquid storage tanks should be taken into account for seismic and wind loads. But Korean industrial standard KS B 6225 does not specify detailed guidelines for a design. It is therefore necessary to improve design guidelines for a seismic and wind-proof design in KS B 6225. The purpose of this study is provide a basis for the development of improved seismic and wind-proof design procedures, especially about seismic and wind loads.

  • PDF

Evaluation of Design Compatibility for Lightweight Soundproof Tunnels using Pipe Truss Beams (파이프 트러스 빔을 이용한 경량방음터널의 설계적합성 평가)

  • Ahn, Dong-Wook;Choi, Sung-Joon;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In this paper, the structural characteristics of a lightweight soundproof tunnel to reduce the dead load imposed on the bridge are investigated. Subsequently, the design procedure of soundproof tunnel structures is reviewed and a design practice for the lightweight soundproof tunnel is carried out according to the reviewed procedure. Next, design compatibility for the lightweight soundproof tunnel is verified through a detailed finite element analysis. The result for evaluation of design compatibility shows that the lightweight soundproof tunnel has structural safety in structural members, welding zones and foundation parts. It is also confirmed that serviceability and buckling safety is excellent.

Preliminary Design Program Development for Gas Turbine Combustor (가스터빈 연소기 기본 설계 프로그램 개발)

  • Kim, Daesik;Kim, Jinah;Jin, You In
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.27-34
    • /
    • 2015
  • The objective of the current study is to introduce detailed process for a preliminary combustor design, and to develop a computer code for it. The program includes various empirical and semi-empirical methodologies for diffuser deign, combustor sizing, air distribution, and sub-component design such as primary and secondary zones. Using the developed program, the combustor sizing results are shown from an assumption of simple annual combustor cycle analysis. Two options are employed, 1) pressure loss approach, and 2) velocity assumption approach. Design results show that there are no significant differences in combustor sizing between two design options. Further code improvement is required for performance and emission evaluations of the designed combustor.

Study on the Impact-proof Internal Structure Design of a Spent Nuclear Fuel Transport Cask (내충격성을 고려한 사용후연료 수송용기 내부구조물의 설계 연구)

  • Shin, Tae-Myung;Kim, Kap-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.370-377
    • /
    • 2009
  • A simple preliminary analysis is often useful to check a validity of design alternatives before the detailed analysis phase in the viewpoint of efficiency. This paper describes a preliminary analysis procedure for the selection among basket design candidates for the spent fuel shipping cask of Korean standard nuclear power plant. As the cask should maintain the structural integrity in hypothetical accident condition, the case of 9 m drop is significantly considered as the worst scenario among the accident conditions in structural design viewpoint in this paper. As basket design options, totally four different types are considered and analyzed in the point of structural integrity at drop impact and weldability for fabrication. As a result, an insertion round plate type with densely spaced supports turns out to be the best in both of the viewpoints, though the weld plate type shows a bit more design margin.

Development of Water-Cooled Heat Sink for High-Power IGBT Inverter

  • Han, Min-Sub;Lee, Su-Dong;Hong, Chan-Ook;Yang, Chun-Suk;Kim, Kyung-Seo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.349-353
    • /
    • 2008
  • We present the development of a water-cooled heat sink that provides reliable thermal performance for high-power IGBT inverter. The development process comprises three stages. In the concept design, the thermal performances of two design proposals are considered. The thermal system of each design is particularly analyzed using the compact model. In the detailed design stage, specific dimensions of the heat sink are determined considering the design options under given external restrictions and the results from three-dimensional heat transfer analysis. The prototype of the resultant design is made and tested on the rig for final confirmation. We emphasize the relevant use of the thermal analysis on each stage and also discuss various practical issues involved.

  • PDF

Problems And Improvements of the Standards Code for Plant Design (플랜트 설계를 위한 표준코드의 문제점 및 개선방향)

  • Gu, Bon-Hak;Kim, Tae-Hui
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.659-662
    • /
    • 2006
  • Plant industry is very important industry that dominate 70% of standard foreign countries construction acceptance an order woe 2004 years. Technique of plant industry is state that secure part equipment connection detailed design and construction class' competitive power. But, high added value creation among plant industry need technique elevation because available plan, basic design technology is insufficient. Therefore, high added value creation wishes to present problem of standard code and improvement direction for plant design to improve available plan, basic design technology competitive power.

  • PDF

Experimental Design for Port Investment Analysis : A Case Study in a Bulk Terminal (항만투자분석을 위한 실험계획법 : 산물터미널에서의 사례연구)

  • Chang, Young-Tae
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.1-12
    • /
    • 2002
  • Experimental design in simulation provides an efficient way of economizing simulation runs since a considerable number of simulation runs that originally were planned can be reduced by this approach. This experimental design method is an active area of research together with the output analysis and so no single panacea seems to exist so far. Thus, selection of techniques of experimental design and output analysis more likely depends upon the objective of simulation analysis, budget constraint and sometimes the analyst's subjective judgment. This paper attempts to describe an experimental design methodology for port investment analysis using a case study in a bulk terminal in Korea. Detailed display will be focused on simulation period, warm-up period, the number of replications needed in production runs after brief explanation on the system configuration.

  • PDF