• Title/Summary/Keyword: Detached Splitter

Search Result 9, Processing Time 0.02 seconds

Characteristic analysis of flowfield around a square prism having a detached splitter plate using the PIV (PIV에 의한 분리된 분할판을 가진 정방형주 주위의 유동장 특성 분석)

  • Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.338-343
    • /
    • 2013
  • The Flowfield characteristics of a square prism having a detached splitter plate at the wake region were investigated by visualization of the flow field using PIV. The experimental parameters were the width ratios(H/B=0.5~1.5) of the splitter plate to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. As the results the Strouhal number measured at the wake region of the detached splitter plate was decreased with the width ratio and the gap ratio. The clockwise vortex at the upside of the splitter plate and counterclockwise vortex at the downside were represented, the size of these vortices were increased with the width of the splitter plate. The reverse flow was represented at the wake region of the square prism having a detached splitter plate, the size of this reverse flow was increased with the width of the splitter plate.

Control of Drag Force on a Circular Cylinder using a Detached Splitter (Detached Splitter를 이용한 원형 단면 실린더의 항력제어)

  • Sun, Seung-Han;Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.253-258
    • /
    • 2001
  • Control of drag force on a circular cylinder using a detached splitter plate is numerically studied for laminar flow. A splitter plate with the same length as the cylinder diameter(d) is placed horizontally in the wake region. Its position is described by the gap ratio(G/d), where G represents the gap between the cylinder base point and the leading edge of the plate. The drag varies with the gap ratio; it has the minimum value at a certain gap ratio for each Reynolds number. The drag sharply increases past the optimum gap ratio; this seems to be related to the sudden change in the bubble size in the wake region. This trend is consistent with the experimental observation currently available in case of turbulent flow. It is also found that the net drag coefficient significantly depends on the variation of base suction coefficient.

  • PDF

Drag Reduction on a Square Prism Using a Detached Splitter Plate (분리된 분할판에 의한 정방형주의 항력감소)

  • Ro, Ki-Deok;Yoon, Seong-Min;Choi, Dong-Hyeon;Kim, Jae-Hyeon;Sim, Eun-Chong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.808-813
    • /
    • 2012
  • The Characteristics of the drag reduction of a square prism having a detached splitter plate at the wake side were investigated by measuring of lift and drag on the square prism. The experimental parameters were the width ratios(H/B=0.5~1.5) of splitters to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. As the results the amplitude of the lift on the square prism having a detached splitter plate was remarkably decreased by comparison with the prototypical square prism. The drag reduction rate of the square prism was increased with H/B in case of the same G/B, and was increased and decreased with G/B in case of the same H/B. The maximum drag reduction rate was represented by 24.2% at H/B=1.5 and G/B=0.5.

Characteristic calculations of flowfield around a square prism having a detached splitter plate using vortex method (와법을 이용한 분리된 분할판을 가진 정방형주의 유동장 특성계산)

  • Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.156-162
    • /
    • 2013
  • The characteristics of the unsteady flowfield of a square prism having a detached splitter plate at the wake side were investigated by advanced vortex method. The instantaneous and average velocity field and pressure field around a square prism without and having splitter plate were calculated by forcing the gap ratio having the maximum drag reduction rate, at Reynolds number $Re=1.0{\times}10^4$ and the width ratio H/B=1.0 of splitter to the prism width. The drag and lift coefficients on the square prism were also obtained. The calculated results agree with the measured drag coefficients and pressure distributions on the square prism. The vortices of the opposite direction at upside and down side of the splitter plate were generated by installing of the plate. And the drag on the square prism was decreased by increasing of the pressure of back face of the prism with the vortices.

Drag Reduction on n Circular Cylinder using a Detached Splitter Plate (분리된 분할판에 의한 원형단면 실린더의 항력감소)

  • Seon, Seung-Han;Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1632-1639
    • /
    • 2001
  • Control of drag farce on a circular cylinder using a detached splitter plate is numerically studied for laminar flow. A splitter plate with the same length as the cylinder diameter(d) is placed horizontally in the wake region. Its position is described by the gap ratio(G/d), where G represents the gap between the cylinder base point and the leading edge of the plate. The drag varies with the gap ratio; it has the minimum value at a certain gap ratio for each Reynolds number. The drag sharply increases past the optimum gap ratio; this seems to be related to the sudden change in bubble size in the wake region. This trend is consistent with the experimental observation currently available in case of turbulent flow. It is also found that the net drag coefficient significantly depends on the variation of base suction coefficient.

Drag Reduction on a Square Prism Using a Detached Splitter Plate (분리된 분할판에 의한 정방형주의 항력감소)

  • Ro, Ki-Deok;Yoon, Seong-Min;Choi, Dong-Hyeon;Kim, Jae-Hyeon;Sim, Eun-Chong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.157-157
    • /
    • 2012
  • The Characteristics of the drag reduction of a square prism having a detached splitter plate at the wake side was investigated by measuring of fluid force on the square prism and by visualization of the field using PIV. The experimental parameters were the width ratios(H/B=0.5~1.5) of splitters to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. The drag reduction rate was increased with H/B, and was increased and decreased with G/B. The maximum drag reduction rate was represented by 24.2% at H/B=1.5 and G/B=0.5. The two vortices were generated by the splitter plate at the wake region of the prism. The direction of the vortex was clockwise at the upside of the splitter plate and counterclockwise at the downside.

  • PDF

Characteristics of Flowfield of a Circular Cylinder Having a Detached Splitter Plate with High Reynolds Number (고 레이놀즈 수에서 분리된 분할판을 가진 원주의 유동장 특성)

  • Ro, Ki Deok;Lee, Han Gyun;Lee, Jong Ho;Lee, Jeong Min;Shin, Jin Ho;Cheon, Kang Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.373-381
    • /
    • 2016
  • In this study, we investigate the characteristics of the drag reduction of a circular cylinder having a detached splitter plate at the wake side. We measure the fluid force on a circular cylinder and visualize the field using particle image velocimetry (PIV) with a high Reynolds number, Re = 10,000. The experimental paraeters used were the width ratios (H/B = 0.5~1.5) of splitters to the prism width and the gap ratios (G/B = 0~2) between the prism and the splitter plate. The drag-reduction rate of the circular cylinder increased with H/B in the case of the same G/B, and it increased and then decreased with G/B in the case of the same H/B. The vortices of the opposite direction on the upper and lower sides of the detached splitter plate were generated by installing the plate. Reverse flow was caused by the vortices at the wake region of the circular cylinder, and the drag of the circular cylinder was decreased by the reverse flow.

Flow Control Around a Circular Cylinder Using Two Splitter Plates (두 개의 분할판을 이용한 원형 단면 실린더의 유동제어)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.127-134
    • /
    • 2004
  • Control of drag force on a circular cylinder using multiple detached splitter plates is numerically studied for laminar flow Two splitter plates with the same length as the cylinder diameter (d) are placed horizontally in the upstream of the cylinder and in the near-wake region, respectively. Their positions are described by the gap ratios (G$_1$/d, G$_2$/d), where G$_1$ represents the gap between the cylinder stagnation point and the rear edge of the upstream splitter plate, and G$_2$ represents the gap between the cylinder base point and the leading edge of the rear splitter plate. The drag varies with the two gap ratios; it has the minimum value at a certain set of gap ratios for each Reynolds number The upstream splitter plate decreases the stagnation pressure, while the rear splitter plate increases the base pressure by suppressing vortex shedding. This combined effect causes a significant drag reduction on the cylinder Particularly, the drag sharply increases past an optimum G$_2$/d; this seems to be related to a sudden change in bubble size in the wake region.

A Numerical Study on Aerodynamic Noise Characteristics of the Tandem Cylinders using DES and FW-H Acoustic Analogy (DES와 FW-H 음향상사법을 이용한 탠덤 실린더의 공력소음 특성 연구)

  • Kim, Manshik;Lee, Youn Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.883-891
    • /
    • 2018
  • In this paper, aerodynamic noise simulation was conducted using DES (Detached Eddy Simulation) and FW-H (Ffowcs Williams and Hawkings) acoustic analogy for the tandem cylinders which have configuration similar to a landing gear of airplanes. Numerical simulation for the tandem cylinders whose centers are 3.7D apart was carried out and results were compared with the measured data such as flow characteristics, pressure coefficients on the cylinder surfaces and far-field noise characteristics. It was confirmed that periodically shedded vortices released at the upstream cylinder and impinged on the downstream cylinder surface are major sources of aerodynamic noise. After verifying the computational method of using DES and FW-H acoustic analogy for predicting aerodynamic noise of tandem cylinders, additional simulation was conducted to examine the effect of attaching a splitter plate at the rear of the upstream cylinder. It was confirmed that the noise level in specific frequency band decreased significantly because the splitter plate changed the vortex shedding features and reduced dipole noise source.