• Title/Summary/Keyword: Desuperheater Valve

Search Result 2, Processing Time 0.016 seconds

An Analysis Study on Desuperheater valve attachment on Multi Water Spray Nozzles (다중 물 분사 노즐이 장착된 감온밸브의 해석 연구)

  • Lee, Deok-Gu;Cho, Haeng-Hoon;Cho, Nam-Cheol;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.74-79
    • /
    • 2009
  • The generation of electric power and plant facilities have been attempting to improve energy efficiency with many efforts as those being basis of our country's economy. In particular, the CHP(Combined Heat Power plant) system, is producing the electricity and process steam, has generally been using for the cogeneration plants. When CHP system operates, the steam has to maintain the high temperature and high pressure in order to have high efficiency of electric power production as much as possible. In addition, the exhausted steam from the turbine has to reform proper temperature to use the needed process. The major purpose of desuperheater is that the superheated steam changes into the saturated steam because it is more efficient and suitable for using the process, furthermore, it is more convenient and stable regarding the process temperature control. The design of the desuperheater obtained through the experiment and preceding analysis. This paper is verified by analysis that water spray nozzle(${\Phi}$=28mm) shows the best ability under the real power plant condition.

  • PDF

The Analysis on Exergy Loss and its Reduction Methods in Steam Desuperheating and Depressurizing Process (증기의 감온·감압과정에서의 엑서지 손실 및 저감방안 분석)

  • Yi, Joong Yong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • The present paper presented and applied an exergy analysis method to evaluate the magnitudes and the locations of exergy losses in the conventional desuperheating and depressurizing process of high pressure and temperature steam delivery system. In addition, for the reduction of exergy losses occurred in conventional process, the present study proposed new alternative processes in which the pressure reducing valve and the desuperheater of conventional process are substituted with steam turbine and heat exchanger, and their effects on exergy loss reduction and exergy efficiency improvement are theoretically investigated and compared. From the present analysis results, the total exergy loss caused in conventional desuperheating and depressurizing process accounted for 66.5% of exergy input and 85% of the total exergy loss was due to the mixing between steam and cold water(e.g desuperheating). However, it was shown from the present analysis results that the present alternative processes can additionally reduce exergy loss by maximum 92.7% of the total exergy loss in conventional process, and can also produce additional and useful energy, the electricity of 220.6 kWh and the heat of 54.3 MJ/hr.