• 제목/요약/키워드: Desulphurization

검색결과 16건 처리시간 0.024초

MANUFACTURE OF LOW SULPHUR PIG IRON FROM COPPER SLAG

  • URTNASAN ERDENEBOLD;CHOI MOO SUNG;JEI-PIL WANG
    • Archives of Metallurgy and Materials
    • /
    • 제65권1호
    • /
    • pp.349-355
    • /
    • 2020
  • Copper slag differs by chemical composition and structure, depending on the type of processing. Copper slag typically contains about 1 wt.% copper and 40 wt.% iron depending upon the initial ore quality and type of furnace used. The aim is to produce a typical foundry pig iron with the chemical composition of C > 3.40 wt.%, Si 1.40 to 1.80 wt.%, Mn 0.30 to 0.90 wt.%, P < 0.03 wt.% and S < 0.03 wt.% from copper slag. But foundry pig iron manufactured from copper slag contains a high sulphur content. Therefore, this study examines how to conduct desulphurization. Desulphurization roasting and reduction smelting with desulphurization additives used to remove sulphur from the copper slag. The results showed that desulphurization effect of desulphurization roasting is poor but when combined with reduction smelting with CaO addition is possible to manufacture low sulphur pig iron from copper smelting slag.

A Case Study of Desulphurization by Limestone Adsorbent in an Industrial CFBC Boiler

  • Park, Young-Goo;Kim, Seung-Ho;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E2호
    • /
    • pp.67-74
    • /
    • 2005
  • Domestic anthracite contains a large amount of fine particles, which causes to fire the back side of the boiler and to form the clinker deteriorating the combustion efficiency. At this time, the fine limestone adsorbents for a desulphurization agent may be used to facilitate an aggravation of the boiler, so that fine mode of limestone (<0.1mm) has been used no more than $25\%$ in local power stations of Korea. The present test carried out with an in-situ boiler, however, showed that higher content $(up\;to\;50\%)$ of fine limestone particles did not entail any mal-function. In addition, the desulphurization was found to be as good as the old mode of limestone adsorbents.

Synthesis and Application of Metal Doped Silica Particles for Adsorptive Desulphurization of Fuels

  • Jabeen, Bushra;Rafique, Uzaira
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.205-214
    • /
    • 2014
  • Petroleum a vital commodity affecting every aspect of 21st century. Toxicity and adverse effects of sulphur as catalyst in petroleum products is of great concern required development of techniques for desulphurization in compliance with the International standards. Installation of desulphurizing units costs over $200 million per unit placing economic burden on developing countries like Pakistan. Present study analysis of commercial fuels (station petrol and jet fuel JP8) on gas chromatography-mass spectrometry (GC-MS) identified sulphur concentration of 19.94 mg/L and 21.75 mg/L, respectively. This scenario urged the researcher to attempt synthesis of material that is likely to offer good adsorption capacity for sulphur. Following protocol of sol-gel method, transition metals (Ni, Cu, Zn) solution is gelated with tetraethoxysilane (TEOS; silica precursor) using glycerol. Fourier transform infrared spectroscopy (FTIR) spectra revealed bonding of Zn-O, Cu-O, and Ni-O by stretching vibrations at $468cm^{-1}$, $617cm^{-1}$, and $468cm^{-1}$, respectively. Thiophene and Benzothiophene mixed in n-heptane and benzene (4:1) for preparation of Model Fuels I and II, respectively. Each of silica based metal was applied as adsorbent in batch mode to assess the removal efficiency. Results demonstrated optimal desulphurization of more than 90% following efficacy order as Si-Ni > Si-Zn > Si-Cu based adsorbents. Proposed multilayered (Freundlich) adsorption mechanism follows ${\pi}$-complexation with pseudo secnd order kinetics.

A study of the replacement of desulphurization slag for sand to ready-mixed soil materials (RMSM)

  • Shiha, Yi-Fang;Tseng, Shih-Shong;Wang, Her-Yung;Wei, Chih-Ting
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.423-433
    • /
    • 2016
  • After the industrial of steelmaking by-products are processed properly, they can be used in civil engineering, not only as a substitute for natural resources and to reduce costs, but also to provide environmental protection. This study used different amounts (10%, 20%, 30%, 40%,and 50%) of desulphurization slag to replace natural fine aggregates in ready-mixed soil materials, and tested the physical and fresh properties (slump, slump flow, tube flow, initial setting time, and bleeding) and hardened properties (compressive strength, ball drop, ultrasonic pulse velocity) of the materials. The variations between the performances of the materials with different mix proportions were discussed. When desulphurization slag is used in RMSM, the workability can be enhanced obviously significantly. When the replacement of desulphurization slag is 50%, the slump flow is increased by 110mm compared with the control group, and the initial setting time increases as the replacement increases, because of bleeding. When the replacement is 10% and 20%, the compressive strength at various ages is higher than that of the control group. When the replacement is 10%, the compressive strength at 7 days is higher than that of the control group by 60%, and the ultrasonic pulse velocity is proportional to the compressive strength, which increases with age and decrease as the replacement increases. An appropriate replacement can effectively accelerate construction, and allow projects to be finished ahead of schedule; therefore, an appropriate replacement, is applicable for ready-mixed soil materials.

배연탈황설비 흡수탑 내 연소가스 및 슬러리의 거동에 관한 수치해석적 연구 (Numerical Analysis on the Flue Gas Flow and Slurry Behavior in the Absorber of a Flue Gas Desulphurization (FGD) System)

  • 최청렬
    • 한국대기환경학회지
    • /
    • 제23권4호
    • /
    • pp.478-486
    • /
    • 2007
  • Numerical analysis had been performed to understand flow characteristics of the flue gas and slurry in the absorber of a flue gas desulphurization (FGD) system using computational fluid dynamics (CFD) technique. Two-fluid(Euler-Lagrangian) model had been employed to simulate physical phenomenon, which slurry particles injected through slurry spray nozzles fall down and bump into the flue gas inflowing through inlet duct. It was not necessary to adopt pre-defined pressure drop inside the absorber because interaction between flue gas and slurry particles was considered. Hundreds of slurry spray nozzles were considered with the spray velocity at the nozzles, swirl velocity and spreading angle. The results note that the flow disturbance of flue gas is found at the bottom of the absorber, and the current rising with high speed stream is observed in the opposite region of the inflow duct. The high speed stream is reduced as the flue gas goes up, because the high speed stream of flue gas dumps falling slurry particles due to momentum exchange between flue gas and slurry particles. In spite of some disproportion in slurry distribution inside the absorber, escape of slurry particles from the absorber facility is not observed. The pressure drop inside the absorber is mainly occurred at the bottom section.

벤치규모 가압유동층연소로에서 석회석에 의한 국내무연탄의 탈황특성 (Desulfurization Characteristics of Domestic Anthracite by Limes at Bench Scale Pressurized Fluidized Bed Combustor .)

  • 한근희;류정인;진경태
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1373-1383
    • /
    • 2001
  • The desulfurization characteristics of anthracite in a bench scale pressurized fluidized bed combustor are investigated. The coal used in the experiment is domestic anthracite from Kangwon Taeback area. The desulphurization experiment is performed with limestone from Chungbuk Danyang. The pressure of the combustor is maintained at 6 atm, and the combustion temperatures are 850, 900, and 950$\^{C}$. The superficial gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The Ca/S mole ratios are 0.5, 1.5, 2.5 and 4.5 mole. All experiments are executed at 2m bed height. Consequently, SO$_2$ concentration in the flue gas is increased with incresing bed temperature and superficial gas velocity. However SO$_2$ concentration is decreased with incresing excess air ratio and Ca/S mole ratio.

여러 가지 석고에 따른 Belite-rich Cement 초기 수화의 영향 (Effects of Various Kinds of Calcium sulfates on the Early Hydration of Belite-rich Cement)

  • 조현태;정재현;황인수;송종택;조계홍
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.438-443
    • /
    • 2000
  • This dissertation is focused on the study over the improvement for the early strength of belite-rich cement(BRC). For this purpose, the initial hydration behaviors according to addition of different calcium sulfate types were evaluated. From the observations by XRD, DSC and SEM, the BRC II and III with the addition of natural anhydrate and flue gas desulphurization(FGD) gypsum, respectively, formed much ettringite after 7 days more than the BRC I with the addition of chemical gypsum. The compressive strength of the BRC II and III developed outstandingly due to the formation of calcium aluminate hydrate within pores of hardened BRC paste. Especially, in the case of BRC III adding FGD with low impurities, the early as well as long term compressive strengths were shown very high, compared with other specimens.

  • PDF

CONTAMINANT LEACHABILITY FROM UTILIZED WASTES IN GEOSYSTEMS

  • Inyang Hilary I.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 INTERNATIONAL SYMPOSIUM ON SOIL & GROUNDWATER ENVIRONMENT
    • /
    • pp.5-21
    • /
    • 2005
  • Urbanization rates of population range from about 1% in the developed countries to about 4% in developing countries. For a global population that may reach 10 billion within the next 40 years, pressure has arisen for an increase in the large-scale use of wastes and byproducts in construction. Ironically, most of the wastes that need to be recycled are generated in large cities where the need for constructed facilities to serve large population is high. Waste and recycled materials (WRM) that are used in construction are required to satisfy material strength, durability and contaminant teachability requirements. These materials exhibit a wide variety of characteristics owing to the diversity of industrial processes through which they are produced. Several laboratory-based investigations have been conducted to assess the pollution potential and load bearing capacity of materials such as petroleum-contaminated soils, coal combustion ash, flue-gas desulphurization gypsum and foundry sand. For full-scale systems, although environmental pollution potential and structural integrity of constructed facilities that incorporate WRM are interrelated, comprehensive schemes have not been developed for integrated assessment of the relevant field-scale performance factors. In this presentation, a framework for such an assessment is proposed and presented in the form of a flowchart. The proposed scheme enables economic, environmental, worker safety and engineering factors to be addressed in a number of sequential steps. Quantitative methods and test protocols that have been developed can be incorporated into the proposed scheme for assessing the feasibility of using WRM as partial or full substitutes for earthen highway materials in the field.

  • PDF